1 / 31

Modulation Calorimetry for DC and Pulsed Magnetic Fields

NHMFL User Committee Meeting Sept 30-Oct 2, 2010. Modulation Calorimetry for DC and Pulsed Magnetic Fields. Marcelo Jaime MPA-CMMS Los Alamos National Laboratory. Yoshimitsu Kohama MPA-CMMS, Los Alamos National Laboratory

donnel
Download Presentation

Modulation Calorimetry for DC and Pulsed Magnetic Fields

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NHMFL User Committee Meeting Sept 30-Oct 2, 2010 Modulation Calorimetryfor DC and Pulsed Magnetic Fields Marcelo Jaime MPA-CMMS Los Alamos National Laboratory Yoshimitsu Kohama MPA-CMMS, Los Alamos National Laboratory Christophe Marcenat CEA-Grenoble, InstitutNanosciences et Cryogenie Thierry Klein InstitutNéel, CNRS, BP 166, 38042 Grenoble, France Y. Kohama et al., Rev. Sci. Instruments 81 xxxxxx (2010) [arXiv:1003.3184]

  2. Non Destructive Pulsed Magnetic Fields @ NHMFL Pulsed Magnetic Fields @ LANL 45 T Hybrid 35 T Resistive 20 T Superconducting

  3. History of Calorimetry in Magnetic Fields Adiabatic method Relaxation method Quasi-Adiabatic method A. Berman et al., Phys. Rev. 109, 70(1958) R. Bachmann et al., Rev. Sci. Instrum. 43, 205(1972) M. Jaime et al., Nature. 405, 160 (2000)

  4. 4.5 Temperature (K) 4.0 4.5 3.5 4.0 Temperature (K) 3.5 Specific Heat & MCE in High Fields T/H|S = -T/CH·M/T|H URu2Si2 downsweep upsweep 25 30 35 40 45 H (T)

  5. Modulation Cp measurement In our new setup the sample is now sandwiched between heater and thermometer Solving 1D-heat equation we find the parameter sweet spot Sr3Cr2O8 heater sample Ag epoxy ~400 mm Bare chip thermometer (RuO or Cernox) f.|TAC| TAC·f (a.u.) 1kHz < f < 10 kHz insulating epoxy Cp 1/DTAC Si sample holder

  6. RbFe(MoO4)2: test case 50 T Mid Pulse Magnet QD ppms Collaborators/users: C. Marcenat - CEA-INAC/UJF-Grenoble , Grenoble, France T. Klein - Institut Néel, CNRS, Grenoble, France Y. Kohama et al., Rev. Sci. Instrum in press A. I. Smirnov et al., PRB 75, 134412 (2007)

  7. Size Matters! Sr3Cr2O8S = 1/2 spin dimer 62 T Stotal = 1 • Cr5+, 3d1, effective S = 1/2 vertical dimers 30.4 T Stotal = 0 Ba3Cr2O8 Cr-Cr; 3.977Å ∆; 15.6 K Sr3Cr2O8 Cr-Cr; 3.842 Å ∆; 61.9 K Hc1 Hc2

  8. Sr3Cr2O8 35 T Resistive Magnet

  9. Phase diagram in Sr3Cr2O8 60 T Long Pulse Magnet 50 T Mid Pulse Magnet Spin order (XY-AF) Collaborators/users A. Aczel, G. Luke, A. Dabkowska – McMaster Univ., Canada C. Marcenat, T. Klein – Grenoble, France F. Weickert, - MPI, Dresden, Germany

  10. [Cu(pyz)2(pyo)2](PF6) 15 T SC Magnet P.A. Goddard et al., New J. Phys. 10 08025 (2008) (Pyz=Pyrazine, Pyo=Pyridine-N-Oxide) LDT & thermal relaxation time in 15T SC magnet Collaborators/users J. Manson - Easter Washington University, Washington, USA P. Sengupta - University of Singapore, Singapore

  11. MCE and Cp in pulsed fields Mid pulse magnet Level Crossing (?) Cp = P0/TAC·w Energy Bc Magnetic Field (T)

  12. Cp (pulsed field & LDT) 50 T Mid Pulse Magnet J. L. Manson et al., (in preparation)

  13. Phase diagram for Pb3V2O9 45 T Hybrid Magnet B.S. Conner et al., Phys. Rev. B 81, 132401 (2010) T. Waki et al., J. Phys. Soc. Jpn. 73, 3435 (2004). O. Mentre et al., J. Solid State Chem. 140 417 (1998) Collaborators/users C. Wiebe – Winnipeg, Canada B. Conner, H. Zhou, L. Balicas – FSU, Tallahassee

  14. The intriguing CeIn3 … Proc. Natl. Acad. Sci. 106, 7741 (2009) ( )-1

  15. Specific heat used to lock at CeRhIn5 Ce 60 T Long Pulse Magnet In Rh H//ab H//c Collaborators/users H.Q. Yuan – China E. Bauer – LANL, Los Alamos, USA G. Knebel et al. Phys. Rev. B 74, 020501 (R) (2006) S. Raymond et alPhys. Rev. B 77, 172502 (2008)

  16. Plot of almost everything

  17. Conclusions • We developed the first modulation calorimeter that can measure Cp and MCE in pulsed magnet fields up to 60 T. • AC-Cp in pulsed field is used to efficiently/quickly map out • the phase diagram in RbFe(MoO4)2. • AC-Cp and MCE in Sr3Cr2O8 detect a spin ordering transition in agreement with DC field data. • AC-Cp detects spin ordering transitions and spin state crossover in [Cu(pyz)2(pyo)2](PF6) . • AC-Cp and MCE in Pb3V2O9 uncover PD asymmetry and lineat phase boundary at Hc2 • AC-Cp reveals field-induced QCP and anisotropy in CeRhIn5 Y. Kohama, et al., Rev. Sci. Instrum. (in press), arXiv: 1003.3184

  18. NHMFL User Committee Meeting Sept 30-Oct 2, 2010 Experimental Techniques for Pulsed Magnetic Fields Marcelo Jaime MPA-CMMS, Los Alamos National Laboratory • Modulation calorimeter that can measure Cp and MCE in pulsed magnet fields up to 60 T. • FBG approach to measure magnetostriction to 100 T

  19. Non Destructive Pulsed Magnetic Fields Pulsed Magnetic Fields @ LANL 45 T Hybrid 35 T Resistive 20 T Superconducting

  20. Adiabatic & Q-adiabatic Cp measurement Cp = klink·t1 • Advantage • Absolute Cpvalue • Disadvantage • Requires stability of environment

  21. 4.5 Temperature (K) 4.0 4.5 3.5 4.0 Temperature (K) 3.5 Specific Heat & MCE in High Fields T/H|S = -T/CH·M/T|H URu2Si2 downsweep upsweep 25 30 35 40 45 H (T)

  22. AC calorimetry: the basics kintra klink AC power Cp = P0/TAC·w Advantage Quick Cpmeasurement Disadvantage Strict requirement oft1>>t2 ~klink<<kintra AC-Cp TAC·f (a.u.) f.|TAC| Relaxation method 1/t1 1/t2 f (Hz) 2f

  23. Modulation Cp measurement In our new setup the sample is now sandwiched between heater and thermometer Solving 1D-heat equation we find the parameter sweet spot Sr3Cr2O8 heater sample Ag epoxy ~400 mm Bare chip thermometer (RuO or Cernox) f.|TAC| TAC·f (a.u.) 1kHz < f < 10 kHz insulating epoxy Cp 1/DTAC Si sample holder

  24. Modulation Cp measurement

  25. AC-Cp in Si single crystal Cp (arb. unit)

  26. Phase diagram in Sr3Cr2O8 60 T Long Pulse Magnet 50 T Mid Pulse Magnet Spin order (XY-AF) Collaborators/users A. Aczel, G. Luke, A. Dabkowska – McMaster Univ., Canada C. Marcenat, T. Klein – Grenoble, France F. Weickert, - MPI, Dresden, Germany

  27. Fiber Bragg Gratings GdSb

  28. SrCu2(BO3)2 S.E. Sebastian et al., PNAS. 105, 201572 (2008). Y. Sawai et al., Low Temperature Physics: 24th Int. Conf. on Low Temp. Phys., ed.by Y. Takano, S.P. Hershfield, S.O. Hill, P.J. Hirschfeld, and A.M. Goldman. 2006, AIP Y. Narumi, et al., Jou. Phys. Soc. Jpn. 78, 043702 (2009).

  29. SrCu2(BO3)2 60 T Short Pulse Magnet 100 T Repetitive Pulse Magnet Collaborators/users R. Daou, F. Weickert, - MPI & HLD, Dresden, Germany A. Aczel, G. Luke, A. Dabkowska – McMaster Univ., Canada

  30. Conclusions • We developed the first modulation calorimeter that can measure Cp and MCE in pulsed magnet fields up to 60 T. • AC-Cp in pulsed field is used to efficiently/quickly map out • the phase diagram in RbFe(MoO4)2, Sr3Cr2O8, Pb3V2O9, [Cu(pyz)2(pyo)2](PF6), CeRhIn5 … & more coming • FBGs –based magnetostriction is being developed for experiment in our 100T magnet, in collaboration with MPI & HLD, Dresden, Germany.

More Related