440 likes | 710 Views
Radiointerferometría. Función Visibilidad Síntesis de abertura Reducción de datos. Poder resolutivo de un instrumento:. El ojo humano es capaz de distinguir detalles hasta de un minuto de arco (¡es un instrumento óptico con esa resolución angular!!!).
E N D
Radiointerferometría • Función Visibilidad • Síntesis de abertura • Reducción de datos
Poder resolutivo de un instrumento: El ojo humano es capaz de distinguir detalles hasta de un minuto de arco (¡es un instrumento óptico con esa resolución angular!!!) Consideremos un sistema binario, formado por dos fuentes de luz que distan angularmente entre sí un segundo de arco. Si queremos percibir ambas fuentes separadas … Visible (550 nm) Espejo de 14 cm de diámetro Infrarrojo (10 micras) 2.5 m Radio (1cm) 2500 m !!!
Todo lo anterior es válido si trabajamos en el límite de difracción… Pero cuando realizamos observaciones en el óptico … • longitud de coherencia: 20cm • imágenes en el límite de difracción: 0.001 segundos La resolución angular está limitada a valores del orden del segundo de arco debido al carácter turbulento de la atmósfera
La situación es muy diferente a longitudes de onda de radio: • el frente de ondas no se distorsiona al cruzar la atmósfera • la señal incidente puede convertirse superheterodinamente hasta frecuencias de video, manteniendo las relaciones de fase Ello permite combinar de forma coherente señales recibidas por telescopios a kilómetros de distancia... La coherencia espacial es de miles de kilómetros. INTERFEROMETRÍA
LAS FRANJAS DE INTERFERENCIA: Las rendijas deYoung • D crece espaciado entre franjas decrece • d crece espaciado entre franjas crece • Fuente extensa emborronamiento, ¡ peor contraste entre franjas ! • Fuente elíptica y pantalla rotando … ¡A pensar!!
LA FUNCIÓN VISIBILIDAD • Para una fuente puntual: buen contraste V=1 • Para una fuente extensa: peor contraste V=[0,1] LAS FRANJAS DE VISIBILIDAD EN ASTRONOMÍA • Un interferómetro registra franjas, no imágenes !! • Cuando queremos estudiar un objeto con un interferómetro, la pregunta a responder es ¿Puedo obtener franjas de interferencia del objeto que voy a estudiar? • En un interferómetro astronómico, las dos antenas se comportan como las dos rendijas de Young donde las franjas se emplazarían en un plano hipotético situado en mi estación de trabajo.
LAS FRANJAS DE VISIBILIDAD EN ASTRONOMÍA Ejemplo: Amplitud de la función visibilidad para las observaciones de una estrella Interferómetro astronómico. Principio de apertura de síntesis (Ryle, Premio Nobel 1974) La curva de visibilidad tiene un significado muy especial: es la transformada de Fourier de la distribución de brillo del objeto astronómico en el cielo.
El interferómetro estacionario monocromático s s b An antenna X multiply average
La señal promedio es independiente del tiempo • Usamos “V” para denotar el voltaje de la señal: Depende de la intensidad de la fuente a través de la expresión: de modo que el término V1V2 es proporcional a la intensidad de la fuente, In. (medida en Watts.m-2.Hz-2.ster-2). • La intensidad del producto depende también de las antenas (área y ganacia), pero estos factores pueden calibrarse.
La respuesta de una fuente extensa se obtiene integrando la respuesta sobre el ángulo sólido de la fuente en el cielo: Importante: el vector s es una función de la dirección en la que miramos, por lo que la fase en el coseno depende del ángulo de llegada de la señal Une la distribución de brillo en el cielo (In(s)) a algo que medimos: la respuesta del interferómetro la función Visibilidad
El correlador puede interpretarse como un “peinado” de un patrón de franjas sinusoidal, de escala angular l/B radianes,en el cielo. El correlador multiplica la distribución de brillo de la fuente en el cielo por el patrón de interferencia y lo integra a toda la distribución. La orientación la establece la geometría de la línea de base. La separación de las franjas la establece la longitud de la línea de base y la longitud de onda. l/B rad. Fuente - + - + - + - Signo franjas
Definiendo: (x,y) coordenadas cartesianas de s (u,v) coordenadas de b (en términos de λ) Debido a la rotación de la Tierra: -1 interferómetro: (ui,vi) elipse - N telescopios, N(N-1)/2 interferómetros V(ui,vi) para N(N-1)/2 elipses Plano uv
Interferometría en ondas de radio: Conceptos generales Combinando las señales de las diferentes antenas conseguimos el efecto de una antena cuyo diámetro fuera la máxima distancia entre ellos. • N telescopios • N(N-1)/2 interferómetros • Rotación terrestre En cada instante y para cada línea de base, varía la resolucióm instantánea
Muestreo del Plano de Fourier (ui,vi) Resolución instantánea: (u2+v2)-1/2
Haciendo Imágenes • Inversión de Fourier: Formación de un mapa sucio • Deconvolución: corrección de los efectos que sobre el mapa sucio producen las deficiencias en el muestreo del plano uv • Autocalibración: corrección de los efectos que sobre la imagen deconvolucionada producen los errores de calibración
Un ejemplo simulado Model PSF “Dirty” image CLEAN image
Interferometría en ondas de radio: interferómetros conexos El Very Large Array (VLA) está formado por 27 antenas de 5 m de diámetro, que se combinan para obtener una antena equivalente de varios kilómetros de diámetro. A 6cm 400 milisegundos de arco El interferómetro MERLIN (Reino Unido) está formado por 6 antenas de distinto diámetro, con distancias de hasta 220 kilómetros. A 6cm 50 milisegundos de arco (=HST)
Interferometría de muy larga base (VLBI) La red interferométricaVLBAestá formada por 10 antenas, desde las Islas Vírgenes hasta Hawaii, sintetizando una antena del tamaño del diámetro terrestre.
Interferometría de muy larga base (VLBI) La red interferométrica VLBA está formada por 10 antenas., desde las Islas Vírgenes hasta Hawaii, sintetizando una antena del tamaño del diámetro terrestre. Antenas en órbita, como HALCA, incrementan el telescopio hasta 20.000 km
Determinación de la emisión polarizada Antenna 1 Antenna 2 • Dos antenas, cada una con dos salidas de luz polarizada, de forma que se producen cuatro correlaciones complejas. • De las cuatro correlaciones complejas, obtenemos imágenes de los cuatro parámetros de Stokes. R1 L1 R2 L2 X X X X RR1R2 RR1L2 RL1R2 RL1L2
Calibración de la polarización • Problema: los detectores no tienen polarización pura contaminación en la determinación de los parámetros de Stokes Necesitamos determinar los D-terms: i) observar una fuente no polarizada; ii) cubrimiento de un calibrador en un rango amplio de ángulo paraláctico.
Radiación Sincrotrón: efectos relativistas Beaming Frecuencia de corte: ωcαγ2Bsinθ
Radiación Sincrotrón: Autoabsorción Emisión sincrotrón para un único electrón de energía γ sometido a la acción campo magnético B: P=dE/dt=4/3 σt c (v/c)2γ2 UB Coeficientes de emisión y absorción para una distribución de electrones N(E) = No E-p ευα (Bsinθ)p+1/2υ-(p-1)/2 κυα(Bsinθ)p+2/2υ-(p+4)/2
Radiación Sincrotrón: Autoabsorción “Conspiración cósmica” • Núcleo: componente inhomogénea • Componentes del chorro: espectro sincrotrón típico
Radiación Inverso Compton El proceso Compton Inverso convierte fotones de baja energía en fotones de alta energía (~ factor γ2) P=dE/dt=4/3 σt c (v/c)2γ2 Uph, de modo que P synch /PIC=UB/U ph El espectro del “scattering” Compton Inverso depende del espectro de fotones incidente y de la distribución de energía de los electrones
Emisión de línea Información cinemática por efecto doppler Información “térmica” por intensidades (absolutas y relativas entre transiciones) Densidades de columna (cantidad de gas a lo largo de la línea de visión) y masas
21 cm Líneas moleculares (otras moléculas) Líneas de recombinación Normalmente: Transiciones electrónicas → óptico Transiciones vibracionales → infrarrojo Transiciones rotacionales → radio HI-21cm y recombinación son transiciones electrónicas
Líneas de recombinación Regiones HII Radiación de frenado (continuo) Líneas de recombinación (UV-radio): regreso del electrón a niveles de energía ligados
Niveles electrónicos del hidrógeno En=-13.6 eV/n2 H92a: 93→92, en radio, 4cm
21 cm En=-13.6 eV/n2 Correcciones a los niveles de Bohr, estructura fina e hiperfina. Números cuánticos n, l, s
Acoplamiento de spines nuclear y electrónico desdobla el estado base: N=1, l=0, s=±1/2 Total: F= 1, 0 núcleo: j=1/2 Transición “prohibida”, prob. transicion = 2.87 x 10-15 s-1 Tiempo medio = 1.11 x 107 años
Líneas moleculares (normalmente rotacionales)
Probabilidad de transición aumenta con el momento dipolar eléctrico Molécula H2 no tiene momento dipolar Se estudia emisión de otras moléculas La más abundante en nubes moleculares, CO CO(J=1→0), en 3mm (115 GHz)
Normalmente, la población de niveles dada por la temperatura cinética del gas Niveles inferiores tienden a estar más poblados
Máseres Choques o radiación intensa pueden invertir la población de niveles de una molécula Un fotón de esa frecuencia estimula la desexcitación súbita Emisión muy intensa y localizada Máseres de H2O, SiO, CH3OH, OH, NH3