310 likes | 489 Views
What is Millimetre-Wave Astronomy and why is it different?. Michael Burton University of New South Wales. Some Millimetre Basics. MM: 1–~12mm, Sub-MM: 0.3–1mm CMBR (T = 2.7K = 1mm ) Molecular rotational lines Polar molecules (have dipole moment) eg CO (E 1 = 5K), HCN, CS, HCO +
E N D
What is Millimetre-Wave Astronomyand why is it different? Michael Burton University of New South Wales
Some Millimetre Basics • MM: 1–~12mm, Sub-MM: 0.3–1mm • CMBR (T = 2.7K = 1mm) • Molecular rotational lines • Polar molecules (have dipole moment) eg CO (E1 = 5K), HCN, CS, HCO+ • Cold thermal continuum (dust) • Thermal processes: F ~ B ~ 2kT2/c2 . x • Problem: Atmosphere (O2, H2O)……
The Millimetre Advantage • Thermal Processes B 0.5-2 2 • Decay Rates (linear molecules) 3 • Doppler Widths 0.5 [?] • Level Population (T>>TJ; gJJ) • Number of Photons -1 • Energy • Spatial Resolution -1
Transparancies • Electromagnetic Spectrum • MM transmission for 4mm H2O • MM transmission for 11mm H2O • Some bright MM-lines
Physical Parameters you can derive! • Temperature: Tex, TBrightness • Density: nH2 (~ncrit range of densities present!) • Column Density: N (when optically thin) • Optical Depth: (use isotope ratios) • Mass (with scale length) • Abundances: different species • Velocities: line widths, centres, shapes Infall, outflow, mass transfer rates Constrain the properties of your source!!
16272-4837SEST molecular line survey • Gradient: Trot = 27 ± 4 K • Intercept: N(H2) = 1 x 1024 cm-2 • ( comes in as well) • Size + Column: n(H2) = 6 x 105 cm-3 • With Volume: Mass = 6 x 103 M Garay et al, 2002
16272-4837: SEST kinematical studies Optically Thick • Evidence for infall • (profile of optically thick lines) • Modelling: Vinfall ~ 0.5 km s-1 • - Speed + Density + Size: • dMinfall/dt~10-2 M yr-1 • Evidence for outflow from wings • - Extent: Voutflow = 15 km s-1 Optically Thin Wide Wings Brooks et al, 2002
Mopra: Current Capabilities • 22-m Telescope for > ~3mm • 85–115 GHz SIS receiver (2.6 – 3.5 mm) • 35” beam @ 100 GHz • Tsys ~ 150K(@85GHz) – 300K (@115GHz) • Beam Efficiency: • mb (86 GHz) = 0.49, mb (115 GHz) = 0.42 • xb (86 GHz) = 0.65, xb (115 GHz) = 0.55 • Bandwidth 64, 128 or 256 MHz (200 - 800 km/s) • 1024 Channels (0.2 - 0.8 km/s per channel) • 2 Polarizations • 1 frequency or 1 polarization + SiO 86 GHz • Must Nod – No chopping • OTF Mapping
Methanol Maser-selected Hot Molecular Core Survey CH3CN CH3OH HCO+ H13CO+ N2H+ HCN HNC 7 lines; 86 Sources Purcell
‘On the Fly’ Mapping with Mopra:The Horsehead Nebula Optical 12CO 13CO 6 arcmin Tony Wong
Tony Wong 0.17 km/s channel spacing
OTF Mapping Specifications • For a 300” x 300” map: • ~1400 spectra (31 x 46) • ~35” resolution • 0.17 km/s resolution • 120 km/s bandwidth • Dual polarization • ~ 0.3K per channel, per beam • ~70 minutes / grid • Upto 7 grids / transit • Processed with LIVEDATA + GRIDZILLA packages
0sec(z) 0 z Tsou How many photons have we lost (or gained)? Trec Tatm Signal on-source:
Sky (Reference, Off) Difference Source (On)
Some Radiative Transfer • Radiative Transfer dI/ds = - I + • Kirchoff (LTE) / = B(T) • Radiative Transfer dI/d = I + B(T) • Solution I(s)= I(0)e- (s) + B(T)(1 - e- (s)) • Source Atmosphere
Obtaining Data:Signal from Source and Reference • TSig = C{TR+TA(1-e-0secz)+TS e-0secz} • TRef = C{TR+TA(1-e-0secz)} • [TSig-TRef]/[TRef] = TS e-0secz/ {TR+TA(1-e-0secz)} Show Plots of Opacity + Brightness Temperature • TBB = C{TR+TA} • [TSig-TRef]/[TBB - TRef] = TS/TA
Calibrating Data:Gated Total Power • GTPRef = C’ TRef • GTPPaddle = C’{TA + TR} • [GTPPaddle - GTPRef] / GTPRef = TAe- 0secz / {TR+TA(1-e-0secz)} • GTPHot - GTPCold = C’{THot - TCold} Atmosphere Liquid Nitrogen
Calibrating Data: • {[TSig-TRef]/[TRef]} / {[GTPPaddle - GTPRef] / GTPRef } = TSource / TAtmosphere • Actually TSource = T’Source / Efficiency • Usually written as TMB = TA* / (note the different notation)
Mopra Upgrades • 8 GHz Digital Filter Bank • Zoom modes • 4(?) lines simultaneously • MMIC receiver • Easier tuning • Higher Tsys • May loose 115 GHz end? • 7 mm receiver • New ATNF project? • Focal Plane Array??? • Ultra-wide band correlator??? • Needs source of funds……
Australia’s MM–Wave Radio Telescopes 3 mm 12 mm
Australia Telescope Compact Array • National Facility • Built for 1–10 GHz operation • MM-upgrades • 3 mm (85-~105 (115) GHz) • 5 x 22m antennas • EW-array + NS-spur • Currently 84.9-87.3+88.5-91.3 GHz • 12 mm (22-25 GHz) • 6 x 22m antennas • 2 GHz bandwidth upgrade • 7 mm (45 GHz) upgrade planned • 6 antennas • FPAs??? • With ultra-wide-band correlators??
H2O Turbulence Seeing Brightness Temperature MillimetreInterferometry R Sault Poses special challenges: • Significant atmospheric opacity, mostly due to H2O • Fluctuations in H2O produce phase shifts • These increase with both baseline and frequency • Instrumental requirements (e.g. surface, pointing, baseline accuracy) are more severe • Need more bandwidth to cover same velocity range (1 MHz (mm) km/s) Desai 1998