400 likes | 715 Views
Systematics of Level Density Parameters Till von Egidy, Hans-Friedrich Wirth Physik Department, Technische Universit ät München, Germany Dorel Bucurescu National Institute of Physics and Nuclear Engineering, Bucharest, Romania. Nuclear level densities:
E N D
Systematics of Level Density Parameters Till von Egidy, Hans-Friedrich WirthPhysik Department, Technische Universität München, GermanyDorel BucurescuNational Institute of Physics and Nuclear Engineering, Bucharest, Romania
Nuclear level densities: • Energy distribution of all the excited levels: challengeto our • theoretical understanding of nuclei; • Important ingredient in related areas of physics and technology: • - all kinds of nuclear reaction rates; • - low energy neutron capture; • - astrophysics (thermonuclear rates for nucleosynthesis); • - fission/fusion reactor design.
Experimental Methods Nuclear level densities can be directly determined (measured) for a limitednumber of nuclei & excitation energy range: - by counting the number of neutron resonances observed in low-energy neutron capture; level density close to Ex = Bn; - by counting the observed excited states at low excitations. Problem: how to predict (extrapolate to) level densities of less known, or unknown nuclei far from the line of stability, for which there are no experimental data.
Microscopic models: complicated and not reliable.Practical applications: most calculations are extensions and modifications of the Fermi gas model (Bethe):in spite of complicated nuclear structure – only twoempiricalparameters are necessary to describe the level density. Shell and pairing effects, etc., are usuallyadded semi-empirically. Two formulas (models)are investigated: Back shifted Fermi gas (BSFG) model: parameters a , E1Constant Temperature (CT) model: parameters T , E0
Heuristic approach • We determine empirically the two level density parameters by a least squares fit (T. von Egidy, D. Bucurescu, Phys.Rev.C72,044311(2005), Phys.Rev.C72,067304(2005), Phys.Rev.C73,049901 ) to : • - completelow-energy nuclear level schemes (Ex < 3 MeV) • and • - neutron resonance density near the neutron binding energy. • 310 nuclei between 19F and 251Cf • Empirical parameters: complicated variations , due to effects of shell closures, pairing, collectivity (neglected in the simple model) ; • try to learn from this behaviour.
Level densities: averages Average level densityρ(E): ρ(E) = dN/dE = 1/D(E) Cumulative number N(E) Average level spacing D Level spacing Si=Ei+1-Ei D(E) determined by fit to individual level spacings Si Level spacing correlation: Chaotic properties determine fluctuations about the averages and the errors of the LD parameters.
Experimental Cumulative Number of Levels N(E)Resonance density is included in the fit
Fitted parameters T and E0 as function of the mass number AT ~ A-2/3 ~ 1/surface, degrees of freedom ~ nuclear surface
Precise reproduction of LD parameters with simple formulas: • We looked carefully for correlationsbetween the empirical LD parameters and well known observables which contain shell structure, pairing or collectivity. Mass values are important. • shell correction: S(Z,N) = Mexp – Mliquid drop , M = mass • S´ = S - 0.5 Pa for e-e; S´ = S for odd; S´ = S + 0.5 Pa for o-o • derivative dS(Z,N)/dA (calc. as[S(Z+1,N+1)-S(Z-1,N-1)]/4) • -pairing energies: Pp , Pn , Pa (deuteron pairing) • excitation energy of the first 2+state: E(21+) • nuclear deformation: ε2 (e.g., Möller-Nix)
Definition of neutron, proton, deuteron pairing energies:[G.Audi, A.H.Wapstra, C.Thibault, “The AME2003 atomic mass evaluation”, Nucl. Phys. A729(2003)337] Pn(A,Z)=(-1)A-Z+1[Sn(A+1,Z)-2Sn(A,Z)+Sn(A-1,Z)]/4 Pp (A,Z)=(-1)Z+1[Sp(A+1,Z+1)-2Sp(A,Z)+Sp(A-1,Z-1)]/4 Pd (A,Z)=(-1)Z+1[Sd(A+2,Z+1)-2Sd(A,Z)+Sd(A-2,Z-1)]/4 (Sn, Sp, Sd : neutron, proton, deuteron separation energies) Deuteron pairing with next neighbors: Pa (A,Z)= ½ (-1)Z [-M(A+2,Z+1) + 2 M(A,Z) – M(A-2,Z-1)] M(A,Z) = experimental mass or mass excess values
shell correctionS(Z,N) = Mexp – Mliquid drop Macroscopic liquid drop mass formula (Weizsäcker): J.M. Pearson, Hyp. Inter. 132(2001)59 Enuc/A = avol + asfA-1/3 + (3e2/5r0)Z2A-4/3 + (asym+assA-1/3)J2 J= (N-Z)/A; A = N+Z [ Enuc = -B.E. = (Mnuc(N,Z) – NMn – ZMp)c2 ] From fit to 1995 Audi-Wapstra masses: avol = -15.65 MeV; asf = 17.63 MeV; asym = 27.72 MeV; ass = -25.60 MeV; r0 = 1.233 fm.
Proposed Formulae for Level Density Parameters • BSFG a A-0.90 = 0.1848 + 0.00828 S´ E1 = -0.48 –0.5 Pa + 0.29 dS/dA for even-even E1 = -0.57 –0.5 Pa + 0.70 dS/dA for even-odd E1 = -0.57 +0.5 Pa - 0.70 dS/dA for odd-even E1 = -0.24 +0.5 Pa + 0.29 dS/dA for odd-odd • CT T-1 A-2/3 = 0.0571 + 0.00193 S´ E0 = -1.24 –0.5 Pa + 0.33 dS/dA for even-even E0 = -1.33 –0.5 Pa + 0.90 dS/dA for even-odd E0 = -1.33 +0.5 Pa - 0.90 dS/dA for odd-even E0 = -1.22 +0.5 Pa + 0.33 dS/dA for odd-odd
BSFG with energy-dependent „a“ (Ignatyuk) a(E,Z,N) = ã [1+ S´(Z,N) f(E - E2) / (E – E2)] f(E – E2) = 1 – e –γ (E - E2) ; γ = 0.06 MeV -1 ã = 0.1847 A0.90 E2 = E1
a= A0..90 (0.1848 + 0.00828 S’) E1 = p3 + 0.5Pa+ p4dS(Z,N)/dA E1 = p1 - 0.5Pa + p4dS(Z,N)/dA E1 = P2 - 0.5Pa+ p4dS(Z,N)/dA
ã= 0.1847 A 0.90 E2 = p1 - 0.5Pa+ p4dS(Z,N)/dA P2 - 0.5Pa+ p4dS(Z,N)/dA P3 + 0.5Pa+ p4dS(Z,N)/dA
T = A-2/3/(0.0571 + 0.00193 S´) E0 = p1 - 0.5Pa+ p2dS(Z,N)/dA E0 = p3 – Pa+ p4dS(Z,N)/dA E0 = p1 + 0.5Pa+ p2dS(Z,N)/dA
Comparison of calculated and experimental resonance densities
Experimental Correlations between T and a and between E0 and E1 • a ~ T-1.294 ~ A(-2/3) (-1.294) = A0.863 • This is close to a ~ A0.90
New empirical parameters for the BSFG and CT models, from fit to low energy levels and neutron resonance density, for 310 nuclei (mass 18 to 251); • Simple formulas are proposed for the dependence of these parameters on mass numberA, deuteron pairing energy Pa, shell correctionS(Z,N) and dS(Z,N)/dA: • a, T : fromA, Pa , S , a ~ A0.90 • - backshifts: fromPa , dS/dA • -These formulas calculate level densities only from ground state masses • given in mass tables (Audi, Wapstra) . • The formulas can be used to predict level densities for nuclei far from stability; • - Justification of the empirical formulas: challenge for theory. • Simple correlations between a and T and between E1 and E0: • T = 5.53 a –0.773 , E0 = E1 – 0.821 CONCLUSIONS
Aim (i) New empirical systematics (sets) of level density parameters; (ii) Correlations of the empirical level density parameters with better known observables; (iii)Simple, empirical formulas which describe main features of the empirical parameters; (iv) Prediction of level density parameters for nuclei for which no experimental data are available .
Completenessof nuclear level schemes Concept in experimental nuclear spectroscopy: “All” levels in a given energy range and spin window are known. A confidence level has to be given by experimenter: e.g., “less than 5% missing levels”. We assume no parity dependence of the level densities. Experimental basis: (n,γ), ARC : non-selective, high precision; (n,n’γ), (n,pγ), (p,γ); (d,p), (d,t), (3He,d), … , (d,pγ), … β-decay; (α,nγ), (HI,xnypzα γ), HI fragmentation reactions; * Comparison with theory: one to one correspondence; * Comparison with neighbour nuclei; * Much experience of the experimenter. Low-energy discrete levels:Firestone&Shirley, Table of isotopes (1996); ENSDF database. Neutron resonance density:RIPL-2 database; http://www-nds.iaea.org
Energy Spin Nr. of range window levels n binding Spin Density energy (per MeV) Sample of input data
Previous systematics of the empirical model parameters (BSFG): a - well correlated with the “shell correction” S(Z,N): [ S(Z,N) = ΔM = Mexp – Mmacroscopic] Gilbert & Cameron (Can. J. Phys. 43(1965)1446): a/A = c0 + c1 S(Z,N) E1(the ‘back shift’ energy) - generally, assumed to be simply due to the pairing energies : Pn– neutron pairing energy, Pp – proton pairing energy. Up to now – no consistent systematics of this parameter. (e.g., A.V.Ignatyuk, IAEA-TECDOC-1034, 1998, p. 65)