1 / 68

研究方法與實例簡介

研究方法與實例簡介. 中山醫學大學 心理系 何明洲 如要採用,請告知作者,並註明出處. 大綱. 實驗設計簡介 Within-subject design Single factor Multiple factors Between-subject design Mixed design 論文實例介紹. 研究之初. 研究問題的建立與改變 同一個研究問題細分成許多不同的研究方向來檢驗此問題 不同的研究方向延伸出其他的研究問題 匯集而成的研究成果,逐漸建立理論 再由理論延伸出相關問題. 實驗設計簡介. Within-Subject Design.

doria
Download Presentation

研究方法與實例簡介

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 研究方法與實例簡介 中山醫學大學 心理系 何明洲 如要採用,請告知作者,並註明出處

  2. 大綱 • 實驗設計簡介 • Within-subject design • Single factor • Multiple factors • Between-subject design • Mixed design • 論文實例介紹

  3. 研究之初 • 研究問題的建立與改變 • 同一個研究問題細分成許多不同的研究方向來檢驗此問題 • 不同的研究方向延伸出其他的研究問題 • 匯集而成的研究成果,逐漸建立理論 • 再由理論延伸出相關問題

  4. 實驗設計簡介

  5. Within-Subject Design • Also called repeated-measures design • Experiment time is usually brief (< 30 minutes) • Good when the population of interest is scarce • 例如:betel nut chewer

  6. Within-Subject Design • No need to worry about equivalent group problem • Statistically, remove the variance due to the individual difference from the nonsystematic error, increasing the probability to reject null hypothesis

  7. SSbetween subj NO difference between treatments due to subject difference ∵ within-treatment errors include between-subject difference

  8. Counterbalance Testing once per condition • Complete counterbalance • 2 conditions: 2!=2 orders (at least 2 participants), [1,2] [2,1] • 3 conditions : 3!=6 orders (at least 6 participants), [1,2,3] [1,3,2] [2,1,3] [2,3,1] [3,1,2] [3,2,1] • 4 conditions : 4!=24 orders (at least 24 participants) • 10 conditions : 10!=3628800 orders • GOOD for fewer conditions

  9. Counterbalance

  10. Counterbalance • Many conditions (e.g., > 3): Use partial counterbalancing • Latin squares:1.each condition appears once in each raw and column; 2. Each condition precedes and follows each condition one time

  11. Block randomization • Block randomization:當每一種情境出現的次數超過一次時,可使用此法 • In each block,condition orders are randomized • 3 conditions (A, B, C)

  12. Block 1 Block 2 C-B-A A-C-B Block 1 Block 2 A x 3 B x 3 C x 3 A x 3 B x 3 C x 3

  13. Block randomization • 情緒刺激(雙字詞或臉)x情緒種類(中性、恐懼或高興)x 5 repetitions (trials) • 6 (2x3) conditions, each repeats 5 times • 共2 x 3 x 5 = 30 trials • 分兩個block進行,一個block有30 trials。故實驗共有60 trials (30 trials x 2 blocks)

  14. Block 1 Block 2 A x 5 B x 5 C x 5 D x 5 E x 5 F x 5 A x 5 B x 5 C x 5 D x 5 E x 5 F x 5

  15. Block randomization • 可和counterbalancing搭配 • 情緒刺激(雙字詞或臉)x 情緒種類(中性、恐懼或高興)x 5 repetitions (trials) • First block: 雙字詞(15 trials = 3 x 5) • Second block: 臉(15 trials = 3 x 5) • complete counterbalance [1,2] [2,1] • 看實驗結果來判斷是否和counterbalancing搭配

  16. 詞 Block 1 Block 2 A x 5 B x 5 C x 5 A x 5 B x 5 C x 5 詞 臉 Block 1 Block 2 A x 5 B x 5 C x 5 A x 5 B x 5 C x 5

  17. Within-Subjects, Single factor

  18. Within-Subjects, Single factor • 2 levels • Lee and Aronson (1974), how do we maintain balance in a moving environment • IV: moving direction of wall and ceiling (backward or forward) • Student’s t test • ≥ 2 levels • Steele, Ball, and Runk (1997), examine the Mozart effect • IV: Listening music (control, Mozart, and soothing environment sounds)

  19. Analyzing Single-Factor, >2 levels • F Test (analysis of variance, ANOVA變異數分析) • ≥ 2 conditions (or groups) • When 2 conditions, F = t2 • When more than 2 conditions, why not use t test?

  20. EXAMPLE: F Test • 用t test作多重比較, 至少出現一個type I error機率 • 1 – (1 – alpha)c (C: # of paired comparisons) • 噪音程度(無,低,中,高)對記憶的影響 • C = 4!/(2!2!) = 6 • 1-(1-.05)6 = .26 (=26%!!!) • F test 同時比較多組, alpha控制在.05 • H0: μ1 = μ2 = μ3 = μ4 …

  21. EXAMPLE: F Test • Omnibus F test • H0: μ1 = μ2 = μ3 = μ4 … • Post hoc comparisons • Paired comparisons • Control “overall” alphaat .05 • Many control methods: Bonferroni, Shaffer, Sheffet and so on

  22. Within-Subjects, multiple factors

  23. FACTORIAL DESIGNS • Factorial Designs : Designs with more than one independent variable (or factor) • 噪音(高 vs.低)影響雙字詞記憶 • 噪音(高 vs.低) x 詞頻(高 vs.低)

  24. Factorial matrix

  25. Factorial matrix

  26. FACTORIAL DESIGNS • Simplest Factorial Design • 2 x 2 (two-by-two) factorial design • Has two independent variables, each IV has 2 levels • 4 conditions • Number of levels of first IV x Number of levels of second IV x Number of levels of third IV…

  27. FACTORIAL DESIGNS • Interpretation of Factorial Designs (A x B) • Main effects of an independent variable:effect of A factor ONLY (regardless of B factor, average out B factor) • Interaction between the independent variables (how does effect of A factor vary with B factor?),條件機率 • A (A1, A2) x B (B1, B2) • 使用圖表讓讀者瞭解

  28. A - B = C – D 詞頻的效果是否隨者噪音程度改變 A – C = B – D 噪音效果是否隨者詞頻程度改變

  29. FACTORIAL DESIGNS

  30. FACTORIAL DESIGNS • NOTE: Once you obtain both main and interaction effects, interpret the interaction in higher priority

  31. 論文實例介紹

  32. 常見名詞解釋 • SOA (Stimuli Onset Asynchrony) • ISI (Inter-Stimuli Interval) • Visual angle • Viewing distance • 視角  公分  畫素

  33. SOA (stimulus onset asynchrony) ISI (inter-stimuli interval) On Off On Off S1 S2 Time

  34. 論文通常都給viewing distance與visual angle,要自行轉成公分和畫素 Fig. 8-26, p. 181

  35. 視角  公分

  36. 公分視角

  37. 公分  畫素 • dpi (dot per inch):每英吋所呈現的列印點數 • 右鍵內容設定值進階

  38. 公分  畫素 • 螢幕解析度: 640x480 、 800x600 、 1024x768…等,解析度越來越好,因為螢幕單位長度中塞進了更多的像素 • 螢幕尺寸 • 基本上 17 in螢幕,Eprime調1280x1024,會成為約96dpi • 同一螢幕同一刺激, Eprime解析度調越小,呈現刺激越大 • 畫好後,記得用尺量,較為準確

  39. 方法結構 • Participants • Apparatus • Stimuli*** • Design*** • Procedure***

  40. Right hemispheric dominance in processing of unconsciousnegative emotion Sato and Aoki

  41. 3 x 2 factorial design

  42. Viewing distance = 57 cm 視角  公分  畫素

  43. The Impact of Emotion onPerception Zeelenberg, Wagenmakers and Rotteveel

  44. 3 x 3 factorial design

More Related