1 / 39

Physiological Regulations and Confrontation with Pathology and Diseases

This presentation discusses the general and special aspects of physiological regulations, as well as their confrontation with pathology and diseases. It covers topics such as feedback systems, circulation, thermo-regulation, endocrine disorders, temperature control, blood pressure control, and more. The slides outline the functional organization of living organisms and the concepts of system approach in physiology and medicine.

doriscortes
Download Presentation

Physiological Regulations and Confrontation with Pathology and Diseases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physiological regulations- confrontation withpathologyand diseases Petr Marsalek Dept. Pathol. Physiol, head: Emanuel Nečas CharlesUniversity of Prague, 1st Medical Faculty total 40 slides

  2. Outline • - General/ versus Special (patho)-physiology • - Physiologic/ vs. pathologic regulation • Vicious circles • Feedback in general: positive/ vs. negative • Best shownon these two examples: • 1) circulation • 2) thermo-regulation • - Etc. total 40 slides

  3. Test Cíle pochopit - funkční organizaci živých organizmů - základní koncepty systémového přístupu k lidskému organismu - experimentální a vyšetřovací metody užívané ve fyziologii a medicíně - integrované funkce systémů skýtajících uplatnění pro biomedicínské techniky a inženýry koncepce → vývoj → validace → uplatnění nových technologií - být schopen - definovat zajímavé problémy a navrhnout jejich řešení - využít získaných znalostí: - v oblasti biomedicinského inženýrství - v oblasti biotechnologie total 40 slides

  4. Blok 1 Na konci této kapitoly bych měl být schopen : • definovat živý systém v termodynamickém pojetí • definovat buňku a její hlavní funkce • vysvětlit koncept homeostázy na úrovni jednobuněčného a mnohobuněčného organismu • popsat složení a objemy základních elektrolytických oddílů lidského těla • definovat a klasifikovat (spřažené) transporty charakterizující živé organismy • vysvětlit, že základem buněčných funkcí jsou konformační změny proteinů • vysvětlit jak živočisné buňky generují a využívají energii total 40 slides

  5. Hypothalamus Hypophysis Peripheral gland Target cells Let us recall the general intro to endocrine disorders • Negativefeed-back • short / lonngfeed-back • system stability… total 40 slides

  6. Example1: glycemia control by insulin total 40 slides

  7. total 40 slides

  8. total 40 slides

  9. General description of control systems total 40 slides

  10. Control system: Negative feed-back y…controlled variable, i/o w…pre-setvalue e…error signal u…actuating variable d,n…disturbance variables Innegative feed-back, error signaleused for controlisobtained by subtractionof thecontrolled variable (-y) from the pre-set value (+w),e = w - y. total 40 slides

  11. Control system: Positive feed-back y…controlled variable, i/o w…pre-setvalue e…error signal u…actuating variable d,n…disturbance variables Inpositive feed-back, error signaleused for controlresults from additionof thecontrolled variable (+y) to the pre-set value (+w), e = w + y. total 40 slides

  12. Examples – negative and positivefeed-back • Negative feed-back – easy, almost everything is controlled this way: • blood pressure, temperature, glycemia, … • in general – homeostasis… • positivefeedback – fewer examples, more difficult: • in physiology/ pato-physiology: • Ovulation, sex hormones in large, „avalanche-like“ trigger reactions: • hemocoagulation, division of lymfocytes • during the immune reaction (e.g the pneumonia crisis) • 2) Pathology (pathologic values of variables, vicious circles, failures). • Building up of a new, pathologic equilibrium, example: adaptation tothe lower PO2 • failure of blood pressure control ->shock, hypo-perfusion, hypoxia… total 40 slides

  13. Example 2: temperature control, fever total 40 slides

  14. total 40 slides

  15. total 40 slides

  16. total 40 slides

  17. Heat collapse, heat stroke… total 40 slides

  18. Fever,temperature control total 40 slides

  19. Malignant hypertermia total 40 slides

  20. hypo-thermia total 40 slides

  21. Example 3: blood pressure control total 40 slides

  22. Preliminary thoughts 2 – pressure/ flow/ relation,Ohm’s (Poiseulle) law Pressure-Flow-Resistance Relationship in a Blood Vessel Blood flow in a blood vessel is equal to the pressure difference along the vessel divided by the vascular resistance.     Flow = (Upstream Pressure - Downstream Pressure) / Resistance Vascular conductance is the reciprocal of vascular resistance. The pressure-flow relationship becomes     Flow = (Upstream Pressure - Downstream Pressure) * Conductance Typical units for vascular conductance are (ml/min) / mmHg. total 40 slides

  23. Blood vessels tend to collapse at low volumes. Internal pressure is equal to external pressure, which is often at or close to zero relative to atmospheric pressure. As additional volume is added, a critical volume is reached where any added volume causes the internal pressure of the vessel to increase. This critical volume is called the unstressed volume. Unstressed volume is usually denoted by V0 or V0. Vascular compliance is the reciprocal of the slope of the pressure-volume relationship at volumes greater than unstressed volume. The physical units for compliance are typically ml/mmHg. Approximate compliance values (ml/mmHg) for an adult male are Preliminary thoughts 3 – pressure/ volume relation Pressure-Volume Relationship in a Blood Vessel Equations describing the pressure-volume relationship: P = 0 when V < = V0     P = (1/C) * (V - V0) when V > V0 total 40 slides

  24. Preliminary thoughts 3 – Frank-Starling law The Frank-Starling relationship may describe the right heart alone, the left heart alone, or the right heart, pulmonary circulation, and left heart combined. This last case is described here. The Frank-Starling relationship describes the blood pumped by the heart-lung compartment, cardiac output, in terms of the filling pressure, right atrial pressure. total 40 slides

  25. Preliminary thoughts 4, the continuity equation …almost trivial…,  Left heart flow = = right heart flow, and so on total 40 slides

  26. Nečas etal., Vol 1, p. 147 version 3, Czech „patophysiology“, 2003 total 40 slides

  27. version 1, „physical model“, no dateequations only, …almost trivial…,  1. Frank-Starling law 2. Ohm’s law (simplification of Poiseulle law) 3. Compliance of vessels 4. Continuity equation (volumes persist) total 40 slides

  28. these variables are in equations, described here and on …[Litre] blood volume …[Litre/sec] minute volume …[mmHg.sec/Litre] pulmonary resistance …[mmHg.sec/Litre] systemic resistance …[mmHg] arterialsystemic pressure …etc. version 2, „variables and units“, no date… 1. Frank-Starling law 2. Ohm’s law (simplification of Poiseulle law) 3. Compliance of vessels 4. Continuity equation (volumes persist) total 40 slides

  29. version 4, „physiological model“ – for separatepartsof circulation, no date Frank-Starling law (control by input) Q =KL * PVP Q =KR * PVS Ohm’s law Q = (PAS - PVS)/RSyst Q = (PAP - PVP)/RPulm Vessel compliance in separate parts VB = V0+ VAS + VVS + VAP + VVP VAS =CAS * PAS VVS =CVS * PVS VVP =CAP * PVP VAP =CVP * PAP RPulm PAP PVP VVP VAP CAP CVP KR KL Q PVS PAS VVS VAS CVS CAS V0 Blood Volume - VB RSyst total 40 slides

  30. version 5, „physiological model“ with values – for separatepartsof circulation, no date • Frank-Starling law (control by input) Q =KL * PVP Q =KR * PVS • Ohm’s law Q = (PAS - PVS)/RSyst Q = (PAP - PVP)/RPulm • Vessel compliance in separate parts VB = V0+ VAS + VVS + VAP + VVP VAS =CAS * PAS VVS =CVS * PVS VVP =CAP * PVP VAP =CVP * PAP RPulm = 1,79 torr/l/min PAP 15,02 torr PVP 5 torr VAP 0, 1 l VVP 0,4 l CAP = 0,00667 l/torr CVP = 0,08 l/torr KR = 2,8 l/min/torr PAS 100 torr KL = 1,12 l/min/torr Q 5,6 l/min PVS 2 torr VVS 3,5 l VAS 1 l CVS = 1,750 l/torr CAS = 0,01 l/torr V0 = 0,6 l Blood Volume: VB =5,6 l RSyst = 17,5 torr/l/min total 40 slides

  31. ver. 6 Animation version 2, 2006 Technology: Flash total 40 slides

  32. Technology: Flash ver. 7, Animation version 2, 2006 total 40 slides http://www.physiome.cz/atlas/cirkulace/05/SimpleUncontrolledSimulationEC.swf

  33. And what comes next, next animation version, in 2009? No way, we need more deep understanding to blood pressure control… No king’s road leads to quantitative description • Mainlimitationsof the model discussed here: • Only linear equations, nelinearities present in failure! • Only passive control, how to plug in autonomous control? • Only time scale in minutes, how is it with Q^dot in longer time scale ? • What variables are observables/ what can be estimated? • How fast the disorder develops, what are riscs, criticalvalues.? • Etc… total 40 slides

  34. Heart workin circulation,1 to4 total 40 slides

  35. Preload, afterload total 40 slides

  36. total 40 slides

  37. total 40 slides

  38. Further properties of control systems–dynamics (= time scale), etc… • dynamics (time scale, system response) • - linearity vs. non-linearity • - types ofcontrollers (proportional, integral, differential, mixed, state automaton, etc.., etc..) • system approach • precision, sensitivity, stability • demands on energy, information transfer, etc… total 40 slides

  39. Conclusions • Feedback in general: positive/ vs. negative • Physiologic/ vs. pathologic regulation • Shownon these three examples: • 1) glycemia control • 2) thermo-regulation • 3) circulation total 40 slides

More Related