1 / 57

The origin of strong proton-neutron correlations revealed in break-up reactions

W. Lynch, Monday T. Otsuka, Wednesday A. Wuosmaa, Thursday T. Aumann, Thursday. The origin of strong proton-neutron correlations revealed in break-up reactions. Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

dory
Download Presentation

The origin of strong proton-neutron correlations revealed in break-up reactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. W. Lynch, Monday • T. Otsuka, Wednesday • A. Wuosmaa, Thursday • T. Aumann, Thursday The origin of strong proton-neutron correlations revealed in break-up reactions Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Supported by NSF grant PHY-1068217 and DOE grant DF-FC02-09ER41584 UNEDF M. Horoi CMU

  2. Staggering of Ca Isotopes Charge Radii: A Shell Model Approach Valence space: d3/2 , s1/2 , f7/2 , p3/2 E. Caurier et al, PLB 522, 240 (2001) I. Talmi NPA 423, 189 (1984) M. Horoi CMU

  3. Evolution of lowest 0+ and 1+ states in N=Z nuclei Notice the energy scales! M. Horoi CMU

  4. Shell Model Effective Hamiltonians empty valence frozen core PRC 74, 34315 (2006), 78, 064302 (2008) core polarization: Phys.Rep. 261, 125 (1995) M. Horoi CMU

  5. N=Z sd-Nuclei M. Horoi CMU

  6. Decoupling the singlet pn-pairing M. Horoi CMU

  7. Decoupling the singlet pairing M. Horoi CMU

  8. Decoupling the singlet pairing M. Horoi CMU

  9. Spectroscopic Factors One particle removal cross section: e.g. (p,d) e.g. (d,p) Sum rule: s.p. occupation probability M. Horoi CMU

  10. Are SFs (reliable) “observables”? [Jenny Lee et al, PRL 2010] g.s. SFs seem to be more reliable [Gade et al, PRL 93, 042501] M. Horoi CMU

  11. Spectroscopic factors in the pf-shell J. Lee et al. Phys. Rev. C 79, 054601 (2009) B. Tsang et al. Phys. Rev. Lett. 102, 062501 (2009) M. Horoi CMU

  12. Spectroscopic Factors: (d,p) consistent with (p,d) B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005) M. Horoi CMU

  13. pf-Nuclei M. Horoi CMU

  14. Spectroscopic Factors: Independent Particle Model (IPM) • IPM Model: • n identical nucleons in • One single j-shell: e.g. f7/2 • Only pairing interaction B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005) M. Horoi CMU

  15. Can one measure neutron S7/2 for N=28 isotones? M. Horoi CMU

  16. The Magic of Proton-Neutron Correlations New/MSU 2010/MSU Data from J. Lee and B. Tsang M. Horoi CMU

  17. S7/2 for N=28 isotones and f7/2 n-occupation M. Horoi CMU

  18. S7/2 for N=28 isotones and f7/2 n-occupation M. Horoi CMU

  19. S7/2 for N=28 isotones described in the f7/2 shell f748 int: KUTCHERA et al. NUOVO CIM, VOL-1 NO-12 J T V(JT) Vpn 0 1 -2.068 0.0 1 0 -2.061 0.0 2 1 -0.757 3 0 -0.989 4 1 0.119 5 0 -0.811 6 1 0.333 7 0 -2.218 0.0 M. Horoi CMU

  20. SDPF-U: PRC 79, 014301 (2009) The case of 46Ar ? M. Horoi CMU

  21. Shell Model Effective Hamiltonians empty valence frozen core PRC 74, 34315 (2006), 78, 064302 (2008) core polarization: Phys.Rep. 261, 125 (1995) M. Horoi CMU

  22. SDPF-U + pn “monopole” modifications Occupation probabilities in 46Ar: The case of 46Ar M. Horoi CMU

  23. Summary and Outlook • Spectroscopic factors could be a good tool to identify the enhanced proton-neutron correlations in N~Z nuclei. • Large fluctuations of the neutron SF vs proton number are predicted by the shell model and observed in experiments: strong proton-neutron correlations are essential in nuclei! • These correlations are challenging for mean field theories, but seems to be accommodated by the Green’s function approach! • Parts of the effective H responsible for these strong neutron-proton correlations were identified. • This seems to be just the tip of the iceberg for proton-neutron correlation! More work necessary. M. Horoi CMU

  24. S7/2 for N=28 isotones described in the f7/2 shell f748 int: KUTCHERA et al. NUOVO CIM, VOL-1 NO-12 J T V(JT) Vpn 0 1 -2.068 0.0 1 0 -2.061 0.0 2 1 -0.757 3 0 -0.989 4 1 0.119 5 0 -0.811 6 1 0.333 7 0 -2.218 0.0 IPM M. Horoi CMU

  25. Short Overview • Few more examples of proton-neutron correlations effects in nuclei • Proton-neutron correlations effects observed in transfer reactions • Which pieces of the shell model Hamiltonian seem to be responsible for these effects M. Horoi CMU

  26. pn-pairing vs pp/nn pairing: Why the difference? Experimental positive parity levels M. Horoi CMU

  27. sd-Nuclei M. Horoi CMU

  28. Which pieces of H2 are responsible? The case of S5/2 for N=14 isotones A. Zuker, PRL 90 (2003) M. Horoi CMU

  29. Which pieces of H2 are responsible? The case of S5/2 for N=14 isotones M. Horoi CMU

  30. Proton-Neutron Pairing: A mean field approach ? Staggering of charge radii of Sn isotopes, MH, PRC 50, 2834 (1995) M. Horoi CMU

  31. W. Dickhoff’s talk M. Horoi CMU

  32. Can one measure S7/2 for N=27 isotones? M. Horoi CMU

  33. sd-Nuclei M. Horoi CMU

  34. 26Al Spectroscopic Factors vs (H01)pn M. Horoi CMU

  35. 26Al Spectroscopic Factors Experimental Data J. Vernotte et al. NPA 571, 1 (1994) M. Horoi CMU

  36. Are SFs (reliable) “observables”? [Jenny Lee et al, PRL 2010] g.s. SFs seem to be more reliable [Gade et al, PRL 93, 042501] M. Horoi CMU

  37. Spectroscopic factors in the pf-shell J. Lee et al. Phys. Rev. C 79, 054601 (2009) B. Tsang et al. Phys. Rev. Lett. 102, 062501 (2009) M. Horoi CMU

  38. Spectroscopic Factors: (d,p) consistent with (p,d) B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005) M. Horoi CMU

  39. Evolution of lowest 0+ and 1+ states in N=Z nuclei Notice the energy scales! M. Horoi CMU

  40. Enhanced realization probability of JT=01,10 g.s. for Odd-Odd nuclei M. Horoi CMU

  41. pn-pairing vs pp/nn pairing: Why the difference? Experimental positive parity levels M. Horoi CMU

  42. Spin-triplet vs singlet pn-pairing in 30P Preliminary PLB 430, 203 (1988) M. Horoi CMU

  43. Proton-Neutron Pairing and Binding Energies P. Vogel, nucl-th:9805015 M. Horoi CMU

  44. transfer versus knockout [FN, Deltuva, Hong, PRC submitted 2011] [Jenny Lee et al, PRL 2009] [Gade et al, Phys. Rev. Lett. 93, 042501] M. Horoi CMU

  45. Nuclear Configuration Interaction Center-of-mass spurious states d = 2 (2 j + 1) Nmax pf sd JT-scheme: OXBASH, NuShell J-scheme: NATHAN, NuShellX M-scheme: Oslo-code, Antoine, MFDN, MSHELL, CMichSM, … Limits: 1010 – 1011 m-scheme basis states Lanczos algorithm: provides few lower energies, especially the M-scheme codes. M. Horoi CMU

  46. pf-Nuclei M. Horoi CMU

  47. Spectroscopic Factors: SM vs IPM for N=Z nuclei • IPM: • n identical nucleons in • One single j-shell: e.g. f7/2 • Only pairing interaction 54Co27 50Mn25 B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005) M. Horoi CMU

  48. 26Al Spectroscopic Factors: SM vs IPM • Model: • n identical nucleons in • One single j-shell: e.g. d5/2 • Only pairing interaction B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005) M. Horoi CMU

  49. Staggering of Ca Charge Radii: A Shell Model Approach Valence space: d3/2 , s1/2 , f7/2 , p3/2 E. Caurier et al, PLB 522, 240 (2001) I. Talmi NPA 423, 189 (1984) M. Horoi CMU

  50. sd-nuclei: N=13 odd-odd isotones M. Horoi CMU

More Related