90 likes | 188 Views
Topological states of matter – from the quantum Hall effect to Majorana fermions. Ady Stern (Weizmann). The quantum Hall effects – introduction Unavoidable conclusions. The quantum Hall effects. Introduction. ---------------------------------. I. B. +++++++++++++++.
E N D
Topological states of matter – from the quantum Hall effect to Majorana fermions Ady Stern (Weizmann) • The quantum Hall effects – introduction • Unavoidable conclusions
The quantum Hall effects Introduction
--------------------------------- I B +++++++++++++++ Landau level filling factor = density of electrons density of flux quanta The Hall effect Electrons in two dimensions Classically, Hall resistivity - longitudinal resistivity - unchanged by B. Quantum mechanically degenerate harmonic oscillator spectrum Landau levels
The quantum Hall effect • zero longitudinal resistivity - no dissipation • quantized Hall resistivity to amazing precision • Integer quantum Hall effect - integer n • Fractional quantum Hall effect