220 likes | 246 Views
Wiener Subdivision. Presented by Koray KAVUKCUOGLU Geometric Modeling Spring 2004. Outline. Introduction Concepts Wiener Filtering Theory Wiener Subdivision Midpoint Subdivision Application of Filter Parameters Results. Introduction. aim
E N D
Wiener Subdivision Presented by Koray KAVUKCUOGLU Geometric Modeling Spring 2004
Outline • Introduction • Concepts • Wiener Filtering • Theory • Wiener Subdivision • Midpoint Subdivision • Application of Filter • Parameters • Results
Introduction aim • Derive and Implement a subdivison scheme Based on Marc Alexa’s Wiener Filtering of Meshes methodology • Midpoint Linear Subdivision • Create refined mesh • Wiener Filtering • Relocate vertices to obtain a smooth surface
Wiener Filtering Filtering of Irregular Meshes using Wiener Filter Recovering original smooth geometry from noisy data
Wiener Filtering - Theory Mesh • Triangular domain (K,V) connectivity info vertices in R3 Topological Distance ()
Wiener Filtering - Theory • Neighborhood Definition m-ring neighborhood Collection of rings, with radius up to m • Expectation linear operator Correlation Distance between two vertices
Wiener Filtering - Theory Representation of Vertex Locations vertex position in noisy mesh random noise contribution true vertex position Estimate each point as a linear sum of given noisy points Find coefficients that minimize square of discrepancy
Wiener Filtering - Theory Linear System Solution of this system gives, coefficients aij Need to define distance and correlation functions 1 d i d 2 d
Wiener Subdivision development environment • Language C++ • Mesh format GTS • Windows XP • Cygwin external libs / tools • TNT (template numerical toolkit) Supersedes Lapack++ • Jama/C++ (uses TNT - linear system solution) • Mesh Viewer for visualization
Wiener Subdivision mesh data structure • Tree each triangle divided into 4 childs Triangles Edge Sharing
Wiener Subdivision mesh refinement • Linear midpoint subdivision
Wiener Subdivision filtering • computing Topology • compute m-ring neighborhood BFS over vertices • compute distance and correlation x is parameterized for smoothness control
Wiener Subdivision filtering • solve linear system • LU decomposition method • Jama/C++
Wiener Subdivision parameters • size of m-ring neighborhood (1, 2, …) <-m> • smoothness parameter <-sp> • fraction of old vertex location in new location <-p>
results -m1 / -n3 / -sp2
results -m1 / -n3 / -sp0 -m2 / -n3 / -sp2
results -m1 / -n3 / -sp0 -m1 / -n3 / -sp2 -m2 / -n3 / -sp2
results -m1 / -n3 / -sp2 -m1 / -n3 / -sp2 / -p0.3
results -m2 / -n3 / -sp2 -m1 / -n3 / -sp2 / -p0.3