1 / 41

Condensed Matter Nuclear Science (Cold Fusion)

Condensed Matter Nuclear Science (Cold Fusion). Jean-Paul Biberian Maître de Conférence, Faculté des Sciences de Luminy, CNRS / CRMC- N / Université d’Aix-Marseille II Tél: + 33 660 14 04 85 Email: jpbiberian@yahoo.fr. Overview. A brief history of Cold Fusion

drago
Download Presentation

Condensed Matter Nuclear Science (Cold Fusion)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Condensed Matter Nuclear Science(Cold Fusion) Jean-Paul Biberian Maître de Conférence, Faculté des Sciences de Luminy, CNRS / CRMC-N / Université d’Aix-Marseille II Tél: + 33 660 14 04 85 Email: jpbiberian@yahoo.fr

  2. Overview • A brief history of Cold Fusion • The original Pons & Fleischmann experiment • Excess Heat • Helium detection • Particles • Transmutation • Theory • Conferences • Laboratories • Conclusion Budapest November 15, 2006

  3. Brief history of Cold Fusion • Discovered by Professors Stan Pons and Martin Fleischman in 1989. Announced at a press conference on March 23, 1989. • Immediately after the scientific community split in two: a large majority disbelieved the reality of Cold Fusion, and a small minority either believed in the results, or managed to duplicate the results.

  4. The original Pons & Fleishmann experiment

  5. Experimental set up Silver coating Constant temperature bath LiOD Thermistor cathode anode CRMC-N 29 janvier 2004

  6. Experimental set up CRMC-N 29 janvier 2004

  7. Reactions D + D  T + p 4.0 MeV 50% D + D  He-3 + n 3.3 MeV 50% D + D  He-4 + gamma 24 MeV 10-7 CRMC-N 29 janvier 2004

  8. Miracles 1- The Coulomb barrier 2- No neutrons (where is the dead graduate student?) 3- No gamma rays CRMC-N 29 janvier 2004

  9. Excess Heat measurements

  10. Double cathode : Arata CRMC-N 29 janvier 2004

  11. Experimental set up : Arata CRMC-N 29 janvier 2004

  12. Excess Heat D2O vs H2O : Arata CRMC-N 29 janvier 2004

  13. Co-deposition Pd/D : Miles et al. CRMC-N 29 janvier 2004

  14. Thermistor out Thermistor in Pump Dewar 100 ml/min distilled water at constant temperature Platinum Palladium Co-deposition Pd/D : Biberian CRMC-N 29 janvier 2004

  15. Experiments with D2O- Pout vs time CRMC-N 29 janvier 2004

  16. Experiments with H2O- Pout vs time CRMC-N 29 janvier 2004

  17. Comparison D2O/H2O CRMC-N 29 janvier 2004

  18. Energy produced • Total energy produced, without correction for heat conduction losses: 0.33 MJ • Assuming 100 kJ/mole : 3.3 moles • Palladium electrode :1g, i.e. : 0.01 mole • If D+D He-4 :2.1017 atoms He-4 produced in 21 days, 4.4 107 seconds, 4.5 109 He-4/sec. CRMC-N 29 janvier 2004

  19. Gold layer on palladium : Biberian Gold plated Pd XSH (W) days CRMC-N 29 janvier 2004

  20. Laser Polar. change Laser on Laser stimulation : Letts-Cravens CRMC-N 29 janvier 2004

  21. Particles detection • Helium • Tritium • Neutrons • Protons • X-rays

  22. Arata : Helium-4 CRMC-N 29 janvier 2004

  23. Claytor : Tritium CRMC-N 29 janvier 2004

  24. Experimental set up : Jones CRMC-N 29 janvier 2004

  25. Jones : Neutrons CRMC-N 29 janvier 2004

  26. Experimental set up : Violante CRMC-N 29 janvier 2004

  27. X rays : Violante CRMC-N 29 janvier 2004

  28. Transmutation

  29. Transmutations : Iwamura CRMC-N 29 janvier 2004

  30. Experimental set up : Iwamura CRMC-N 29 janvier 2004

  31. Cs  Pr : Iwamura CRMC-N 29 janvier 2004

  32. Sr  Mo : Iwamura CRMC-N 29 janvier 2004

  33. Anomalous Mo : Iwamura CRMC-N 29 janvier 2004

  34. Transmutation reactions : Iwamura 2 1 88 38 96 42 • Sr + 4 D Mo • Cs + 4 D Pr 2 1 133 55 141 59 CRMC-N 29 janvier 2004

  35. Anomalous Copper : Violante CRMC-N 29 janvier 2004

  36. Theories • Phonon interaction. • Plasmon interaction • Bose Einstein type condensation. • Electron screening. • Hydrinos, Hydrex. • Neutrinos. CRMC-N 29 janvier 2004

  37. Conditions for CMNS • High loading of deuterium in metals: palladium, titanium…. • Metals must have an appropriate metallurgical structure: grain size, thin film… • Dynamic state through pressure change, current variations, laser stimulation… CRMC-N 29 janvier 2004

  38. Conferences • ICCFs: ICCF10, in Boston in August 2003, ICCF11 in Marseilles, October 31- November 5, 2004. • Italy regular meetings in Asti. Next one in March 2004. • Russia: a meeting every year. • Japan : A « Cold Fusion » Society has been created. CRMC-N 29 janvier 2004

  39. Journals and Web sites • www.Lenr-canr.org : with 250 000 downloads in a year • www.cmns.org : New electronic journal with referees CRMC-N 29 janvier 2004

  40. Laboratories working in the field of CMNS • USA: MIT, SRI International, University of Illinois, Naval Research Laboratory,Portland State University, National Institute of Standard and Technology, Space and Naval Warfare Center San Diego, Los Alamos National Laboratory, Brigham Young University, Northwestern University • Russia: 29 laboratories • Japan: Tokyo University,Osaka University, Mitsubishi Heavy Industries,Yokohama National University, Hokkaido University, Kobe University, Iwate State University, Sapporo University, Hanazono University, Nippon Bunri University • China: Tsinghua University, Southwestern Institute of Physics, Sichuan University, China Institute of Atomic Energy, Chinese Academy of Sciences • France: Marseilles University, CNAM (Paris), EDF. • Italy: ENEA, INFN, Pirelli labs, University of Catania, University of Rome, University of Lecce. CRMC-N 29 janvier 2004

  41. Conclusion • Condensed Matter Nuclear Science is a genuine scientific field. • Hydrogen isotopes are involved, mostly at high loading. • Excess heat has been measured by numerous laboratories with very different techniques therefore this excludes artefacts. • Nuclear ashes have been detected: helium, neutron, gammas, X-rays, transmutation. • The mechanism is not the high energy two particles reaction. • Theories exist that are compatible with present quantum mechanics. • Lot more work need to be done to understand the science and develop technologies.

More Related