1 / 21

Abstract Syntax

Abstract Syntax. Mooly Sagiv html://www.cs.tau.ac.il/~msagiv/courses/wcc04.html. Outline. The general idea Bison Motivating example Interpreter for arithmetic expressions The need for abstract syntax Abstract syntax for arithmetic expressions.

drake
Download Presentation

Abstract Syntax

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Abstract Syntax Mooly Sagiv html://www.cs.tau.ac.il/~msagiv/courses/wcc04.html

  2. Outline • The general idea • Bison • Motivating example Interpreter for arithmetic expressions • The need for abstract syntax • Abstract syntax for arithmetic expressions

  3. Semantic Analysis during Recursive Descent Parsing • Scanner returns “semantic values” for some tokens • The function of every non-terminal returns the “corresponding subtree value” • When A  B C Dis appliedthe function for A can use the values returned by B, C, and D • The function can also pass parameters, e.g., to D(), reflecting left contexts

  4. int E() { switch (tok) { case num : temp=tok.val; eat(num); returnEP(temp); default: error(…); }} E  num E’ E’   E’+ num E’ int EP(int left) { switch (tok) { case $: return left; case + : eat(+); temp=tok.val; eat(num); returnEP(left + temp); default: error(…) ;}}

  5. Semantic Analysis during Bottom-Up Parsing • Scanner returns “semantic values” for some tokens • Use parser stack to store the “corresponding subtree values” • When A B C Dis reducedthe function for A can use the values returned by B, C, and D • No action in the middle of the rule

  6. Example num 5 E E + num E num + E 7 E 12

  7. Bison Specification Declarations %% Productions %% C -Routines

  8. Interpreter (in Bison) %{ declarations of yylex() and yyeror() %} %union { int num; string id;} %token <id> ID %token <num> NUM %type <num> e f t %start e %% e : e ‘+’ t {$$ = $1 + $3 ; } | e ‘-’ t { $$ = $1 - $3 ; } | t { $$ = $1; } ; t : t ‘*’ f { $$ = $1 * $3; } | t ‘/’ f { $$= $1 / $3; } | f { $$ = $1; } ; f : NUM { $$ = $1; } | ID { $$ = lookup($1); } | ‘-’ e { $$ = - $2; } | ‘(‘ e ‘)’ { $$ = $2; } ;

  9. %{ declarations of yylex() and yyeror() %} %union { int num; string id;} %token <id> ID %token <num> NUM %type <num> e %start e %left PLUS MINUS %left MUL DIV %right UMINUS %% Interpreter (compact spec.) e : e PLUS e {$$ = $1 + $3 ; } | e MINUS e { $$ = $1 - $3 ; } | e MUL e { $$ = $1 * $3; } | e DIV e { $$= $1 / $3; } | NUM | ID { $$ = lookup($1); } | MINUS e % prec UMINUS { $$ = - $2; } | ‘(‘ e ‘)’ { $$ = $2; } ;

  10. stack input action $ 7+11+17$ shift num 7 $ +11+17$ reduce e num e 7 $ +11+17$ shift + e 7 $ 11+17$ shift num 11 + e 7 $ +17$ reduce enum

  11. stack input action e 18 $ +17$ shift + e 18 $ 17$ shift num 17 + e 18 $ $ reduce enum e 11 + e 7 $ +17$ reduce e  e+e

  12. stack input action $ accept e 35 $ e 17 + e 18 $ $ reduce e::= e+e

  13. So why can’t we write all the compiler code in Bison/CUP?

  14. Historical Perspective • Originally parsers were written w/o tools • yacc, bison, ... make tools acceptable • But it is still difficult to write compilers in parser actions (top-down and bottom-up) • Natural grammars are ambiguous • No modularity principle • Many useful programming language features prevent code generation while parsing • Use before declaration • gotos

  15. Abstract Syntax • Intermediate program representation • Defines a tree - Preserves program hierarchy • Generated by the parser • Declared using an (ambiguous) context free grammar (relatively flat) • Not meant for parsing • Keywords and punctuation symbols are not stored (Not relevant once the tree exists) • Big programs can be also handled (possibly via virtual memory)

  16. Issues • Concrete vs. Abstract syntax tree • Need to store concrete source position • Abstract syntax can be defined by: • Ambiguous context free grammar • C recursive data type • “Constructor” functions • Debugging routines linearize the tree

  17. Exp id Unop  - (UnMin) (IdExp) Exp num (NumExp) Exp Exp Binop Exp Exp Unop Exp (UnOpExp) (BinOpExp) Binop  + (Plus) Binop  - (Minus) Binop  * (Times) Binop  / (Div) Abstract Syntax for Arithmetic Expressions

  18. /* absyn.h */ typedef enum {A_Plus, A_Minus, A_Times, A_Div} Binop; typedef enum {A_UnMin} Unop; typedef enum {A_IdExp, A_NumExp, A_BinOpExp, A_UnopExp} ExpKind; typedef struct exp { ExpKind kind ; union { struct {string repr ;} IdExp; struct {int number ; } NumExp; struct {Binop op; struct exp *left; struct exp *right;} BinExp; struct {Unop op; struct exp *arg;} UnExp; } exp; } *Exp; extern Exp idExp(string repr); extern Exp numExp(int number); extern Exp binOp(Binop, struct exp *, struct exp*); extern Exp unOp(Unop, struct exp*);

  19. e : e ‘+’ t {$$ = binop(A_Plus, $1, $3) ; } | e ‘-’ t { $$ = binop(A_Minus, $1, $3) ; } | t { $$ = $1; } ; t : t ‘*’ f { $$ = binop(A_Times,$1, $3); } | t ‘/’ f { $$= binop(A_Div, $1, $3); } | f { $$ = $1; } ; f : NUM { $$ = numExp($1); } | ID { $$ = idExp($1); } | ‘-’ e { $$ = unOp(A_UnMinus, $2); } | ‘(‘ e ‘)’ { $$ = $2; } ; %{ declarations of yylex() and yyeror() #include “absyn.h” %} %union { int num; string id; Exp exp;} %token <id> ID %token <num> NUM %type <exp> e f t %start e %%

  20. %{ declarations of yylex() and yyeror() #include “absyn.h” %} %union { int num; string id; Exp exp; } %token <id> ID %token <num> NUM %type <exp> e %start e %left PLUS MINUS %left MUL DIV %right UMINUS %% e : e PLUS e {$$ = binop(A_Plus, $1, $3) ; } | e MINUS e { $$ = binop(A_Minus, $1, $3) ; } | e MUL e { $$ = binop(A_Times, $1, $3); } | e DIV e { $$= binop(A_Div, $1, $3); } | NUM {$$ = numExp($1); } | ID { $$ = idExp($1); } | MINUS e % prec UMINUS { $$ = unOp(A_UnMin,$2); } | ‘(‘ e ‘)’ { $$ = $2; } ;

  21. Summary • Flex and Bison simplify the task of writing compiler/interpreter front-ends • Abstract syntax provides a clear interface with other compiler phases • Supports general programming languages • But the design of an abstract syntax for a given PL may take some time

More Related