1 / 20

Sidevõrgud IRT 0020 loeng 7 30. okt. 2006

Learn about Quality of Service (QoS) in telecommunication networks, including its aspects, parameters, and scheduling techniques. Explore the importance of QoS for service providers and end-users. Discover the challenges and solutions in achieving QoS in different network technologies.

dseward
Download Presentation

Sidevõrgud IRT 0020 loeng 7 30. okt. 2006

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SidevõrgudIRT 0020loeng 7 30. okt. 2006 Avo Ots telekommunikatsiooni õppetoolraadio- ja sidetehnika instituut avots@lr.ttu.ee

  2. Market End-Users Content and Service Providers Service operators/ Telecommunications Networking Solutions Physical Telecommunication Network

  3. QoS • Pakettvõrkudes liikluse korralduse (traffic engineering) mõiste “garanteeritud teenuse kvaliteet” (QoS, Quality of Service) tähendab tõenäosuslikku hinnangut, et sidevõrk jälgib liikluslepet. • Paljudel juhtudel kasutatakse QoS tõenäosusena, et pakett läbib võrku saatjast vastuvõtjani oma ettemääratud ajavahemiku jooksul.

  4. Teenusekvaliteedi aspektid QoS – Quality of Service ITU-T E.800 Recommendation

  5. Teenusekvaliteedi aspektid (2) QoS Teenuse Kättesaadavus (Accessibility) Teenuse Püsivus (Retainability) Teenuse Terviklikus (Integrity) QoS parameetrid QoS parameetrid QoS parameetrid

  6. QoS rules • QoS doesn't create bandwidth --it just determines who will get poor service at congestion points. • The most important QoS question is: how many "busy" signals constitute success for your network? • Given a busy signal, users will want to proceed anyway. • Network Managers will not trust end systems. • Biggest need is on WAN links, where it’s hardest to do! (scaling, settlements, signalling interoperability). • Multiplexing priorities on a channel improves efficiency at the cost of certainty.

  7. Link Scheduling: FIFO • First-in first-out scheduling • Simple to implement • But, restrictive in providing guarantees • Example: two kinds of traffic • Video conferencing needs high bandwidth and low delay • E.g., 1 Mbps and 100 msec delay • E-mail transfers are not that sensitive about delay • Cannot admit much e-mail traffic • Since it will interfere with the video conference traffic

  8. Link Scheduling: Strict Priority • Strict priority • Multiple levels of priority • Always transmit high-priority traffic, when present • .. and force the lower priority traffic to wait • Isolation for the high-priority traffic • Almost like it has a dedicated link • Except for the (small) delay for packet transmission • High-priority packet arrives during transmission of low-priority • Router completes sending the low-priority traffic first

  9. 50% red, 25% blue, 25% green Link Scheduling: Weighted Fairness • Limitations of strict priority • Lower priority queues may starve for long periods • … even if the high-priority traffic can afford to wait • Weighted fair scheduling • Assign each queue a fraction of the link bandwidth • Rotate across the queues on a small time scale • Send extra traffic from one queue if others are idle

  10. IP Packet Structure 4-bit Header Length 8-bit Type of Service (TOS) 16-bitTotal Length (Bytes) 4-bit Version 3-bit Flags 16-bit Identification 13-bit Fragment Offset 20-byte Header 8-bit Time to Live (TTL) 8-bitProtocol 16-bit Header Checksum 32-bit Source IP Address 32-bit Destination IP Address Options (if any) Payload

  11. TCP Header 16-bit destination port number 16-bit source port number 32-bit sequence number 20-byte Header 32-bit acknowledgement number U R G A C K P S H R S T S Y N F I N 4-bit header length 16-bit window size 16-bit urgent pointer 16-bit TCP checksum Options (if any) Payload

  12. Teenusekvaliteedi aspektid (3) • Iga teenuse jaoks oma nõuded • QoS profiil • Erinevad teenusekvaliteedi tasemed vastavalt nõuetele

  13. Näidsvõrgud • Coexistence of heterogeneous networks • Home networks, WLAN, 2G/3G, Campus-wide, satellite, … • The development of multimode handsets is a major challenge • Currently discussed standards fall short • Tomorrow user’s will expect the technology structure to “disappear” and be of no concern • Network architecture designed by IST project Daidalos • Provide seamless services accessible anytime anywhere across heterogeneous technologies • Enhanced Mobile IPv6 platform for mobility and QoS • Support for optimized mobility • Integration with QoS resource management

  14. Mobile Terminal Technologies IPv6++/MIPv6/Multicast Terminal Intelligence QoS User GUI FHO CARD IIS Handover QoSC MTC IAL QoSAL MBMS TD-CDMA WLAN WiMAX UDLR DVB-T

  15. Access Router / Access Point Technologies FHO CT D&M Terminal Intelligence IPv6++/MIPv6/ PIM Network Intelligence AM QoS CARD PA MM QoSM Handover QoSAL ENC MBMS TD-CDMA WLAN WiMAX UDLR DVB-T

  16. Handover • Mobile Initiated Handover • Network Initiated Handover • Triggered • At startup • Upon losing signal • Accounts for • user preferences • candidate APs load (QoS) • signal strengths • Triggered by • Overloaded AP (QoS) • losing signal • Accounts for • signal strengths of MTs • APs load (QoS)

  17. Wi-Fi Alliance Roadmap[Amer Hassan, Microsoft, jaanuar 2005] 802.11k 802.11j 802.11e 2004 2005 2006 Q1 Q2 Q3 Q4 Baseline Security QoS Applications 802.11h+d Extended EAP SimpleConfig WMM Scheduled Access WMM Power Save CE Phase1 Public Access Voice/Wi-Fi WCC CE Phase2

  18. QoS vajadus • QoS vajadus esmases tähenduses tuleneb video ja suure edastuskiirusega (mobiilsetest) andmesessioonidest • Lõplikult kavatsetakse realiseerida standardina IEEE 802.11n, vahevariant realiseeriti standardina IEEE 802.11e, mida toetab Proximi AP-4000.

  19. Roadmap – WLAN

More Related