1 / 10

Smart Storage and Linux An EMC Perspective

Smart Storage and Linux An EMC Perspective. Ric Wheeler ric@emc.com. Why Smart Storage?. Central control of critical data One central resource to fail-over in disaster planning Banks, trading floor, air lines want zero downtime Smart storage is shared by all hosts & OS’es

duer
Download Presentation

Smart Storage and Linux An EMC Perspective

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Smart Storage and LinuxAn EMC Perspective Ric Wheeler ric@emc.com

  2. Why Smart Storage? • Central control of critical data • One central resource to fail-over in disaster planning • Banks, trading floor, air lines want zero downtime • Smart storage is shared by all hosts & OS’es • Amortize the costs of high availability and disaster planning over all of your hosts • Use different OS’es for different jobs (UNIX for the web, IBM mainframes for data processing) • Zero-time “transfer” from host to host when both are connected • Enables cluster file systems

  3. Data Center Storage Systems • Change the way you think of storage • Shared Connectivity Model • “Magic” Disks • Scales to new capacity • Storage that runs for years at a time • Symmetrix case study • Symmetrix 8000 Architecture • Symmetrix Applications • Data center class operating systems

  4. Traditional Model of Connectivity • Direct Connect • Disk attached directly to host • Private - OS controls access and provides security • Storage I/O traffic only • Separate system used to support network I/O (networking, web browsing, NFS, etc)

  5. Shared Models of Connectivity • VMS Cluster • Shared disk & partitions • Same OS on each node • Scales to dozens of nodes • IBM Mainframes • Shared disk & partitions • Same OS on each node • Handful of nodes • Network Disks • Shared disk/private partition • Same OS • Raw/block access via network • Handful of nodes

  6. New Models of Connectivity FreeBSD VMS Linux • Every host in a data center could be connected to the same storage system • Heterogeneous OS & data format (CKD & FBA) • Management challenge: No central authority to provide access control Solaris Shared Storage IRIX DGUX NT HPUX MVS

  7. Magic Disks • Instant copy • Devices, files or data bases • Remote data mirroring • Metropolitan area • 100’s of kilometers • 1000’s of virtual disks • Dynamic load balancing • Behind the scenes backup • No host involved

  8. Scalable Storage Systems • Current systems support • 10’s of terabytes • Dozens of SCSI, fibre channel, ESCON channels per host • Highly available (years of run time) • Online code upgrades • Potentially 100’s of hosts connected to the same device • Support for chaining storage boxes together locally or remotely

  9. Symmetrix Architecture • 32 PowerPC 750’s based “directors” • Up to 32 GB of central “cache” for user data • Support for SCSI, Fibre channel, Escon, … • 384 drives (over 28 TB with 73 GB units)

  10. Linux Wish List:Lots of Devices • Customers can uses hundreds of targets and LUN’s (logical volumes) • 128 SCSI devices per system is too few • Better naming system to track lots of disks • Persistence for “not ready” devices in the name space would help some of our features • devfs solves some of this • Rational naming scheme • Potential for tons of disk devices (need SCSI driver work as well)

More Related