530 likes | 676 Views
Accretion Disk MHD Winds as X-ray Absorbers in AGN and GBHC. Demos Kazanas with Keigo Fukumura Ehud Behar (Technion) John Contopoulos (Academy of Athens). ApJ (2010), 715, 636 (FKCBa) ApJ (2010), 723, L228 (FKCBb). Credit: NASA/CXC. Acknowledgements to:. J. Garcia (CUA/GSFC)
E N D
Accretion Disk MHD Winds as X-ray Absorbers in AGN and GBHC Demos Kazanas with Keigo Fukumura Ehud Behar (Technion) John Contopoulos (Academy of Athens) • ApJ (2010), 715, 636 (FKCBa) • ApJ (2010), 723, L228 (FKCBb) Credit: NASA/CXC 10/28/2010 SEAL@GSFC
Acknowledgements to: J. Garcia (CUA/GSFC) T. Kallman (NASA/GSFC) T. Sakamoto (UMBC/GSFC) C. Shrader (USRA/GSFC) J. Turner (UMBC/GSFC) 10/28/2010 SEAL@GSFC
Outflows are Ubiquitous in AGN(originally discovered in their UV spectra) 10/28/2010 SEAL@GSFC
Considering that the formation of the proper ions is due to photoionization (i.e. the value of x = L /nr2 can be inferred, measurements of their velocities vcan be used to obtain the mass loss rate of the wind 10/28/2010 SEAL@GSFC
X-ray Absorbers • Chandra and XMM-Newton discovered a host of absorption features in the X-ray band of wide ionization state and velocities, hinting of much richer wind structures than thought before. • (1) Moderate Outflows ~ various charge state • (~100-1,000 km/sec; Nh ~1021-22 cm-2) • Many charge state from X-ray-bright AGNs • e.g. MCG-6-30-15, IRAS 13349+2438 • (2) Massive Fast Outflows ~ K-shell resonance • (v/c~0.1-0.7; Nh ~1023-24 cm-2) • H/He-like ions from hard-X-ray-weak AGNs • e.g. PDS 456, PG 1211+143, APM 08279+5255 10/28/2010 SEAL@GSFC
Radio-quiet Seyfert AGNs (HETGS) (RGS) • MCG-6-30-15: • (z = 0.007749) • Photoelectric • Absorption: • Lines • Edges slow fast slow fast “Warm Absorber” Chandra/HETGS Holczer+(10) • Slow ~ 100 km/sec @ low-x • High ~ 1,900 km/sec @ high-x • Integrated NH ~ 5.3 x 1021 cm-2 (see also Otani+96, Reynolds+97, Sako+03, Miller+08) 10/28/2010 SEAL@GSFC
X-ray-Bright AGNs • QSO: IRAS 13349+2438: • (z = 0.10764) • X-ray bright, • IR-loud/radio-quiet QSO • X-ray obs. with ROSAT, • ASCA, Chandra, XMM-Newton • Ions with various charge state • Fe XVII ~ 300 km/sec • Potential velocity scatter • Integrated NH ~ 1.2x1022 cm-2 Chandra data Holczer+(07) 10/28/2010 SEAL@GSFC
Narrow-Line Seyferts PG 0844+349 • “Narrow” Hb line < 2,000 km/sec • Weak O III/Hb ratio • Strong “Soft X-ray Excess” • Highly-blueshifted absorption lines (v/c ~ 0.2) Chandra/XMM-Newton data Pounds+(03) PG 1211+143 (v/c ~ 0.1) PDS 456 (v/c ~ 0.25) Pounds+Reeves(09) Reeves+(09) 10/26/2010 CRESST/UMBC
Credit: NASA/CXC/PSU/M.Weiss/G.Chartas Broad Absorption Line (BAL) QSOs: APM 08279+5255 • ~10% of optically-selected QSOs • Faint X-ray relative to O/(F)UV continua • Broad C IV line ~ 2,000-30,000 km/sec • Highly-blueshifted ~ 10,000-30,000 km/sec z = 3.91 10/28/2010 SEAL@GSFC NRAO/AUI/NSF,STScI
UV C IV doublet l7295 l7305 Ellison+(99) BAL QSO: UV Apsorptions • APM 08279+5255: • (z = 3.91) • Lensed QSO (x100) • Optically-bright • IR-loud, radio-quiet • High-velocity outflows • v/c~0.04-0.1 in C IV • (UV: Keck/HIRES) 10/28/2010 SEAL@GSFC Srianand+Petitjean(00)
BAL QSO: X-ray Absorptions • High-velocity outflows: v/c~0.1-0.7 in Fe XXV/XXVI X-ray Absorption line (Fe XXV) Spectral index vs. wind velocity X-ray absorber Chandra/XMM/Suzaku Effect of ionizing spectrum(!?) Fe resonance transitions Brandt+(09); Chartas+(09) 10/28/2010 SEAL@GSFC
Galactic Black Hole Candidates (GBHC) GRO J1655-40: • High ionization: log(x[erg cm s-1]) ~ 4.5 - 5.4 • Small radii: log (r[cm]) ~ 9.0 - 9.4 • High density: log(n[cm-3]) ~ 14 • M(BH)~7Msun • M(2nd)~2.3Msun Miller+(06) NASA/CXC/A.Hobart Chandra Data Miller+(08) 10/28/2010 SEAL@GSFC
Can we make sense of all these diverse • Observations? • Fundamental Questions: • Geometry? • Spatial location? • Properties? • Physical origin? 10/28/2010 SEAL@GSFC
Absorption Measure Distribution (AMD) AMD(x) = dNH / dlogx ~ (logx)p where x = L/(n r2) (5 AGNs) column (0.02 < p < 0.29) column ionization ionization Holczer+(07) Behar(09) presence of nearly equal NH over ~4 decades in x (p~0.02) 10/28/2010 SEAL@GSFC
Some Simple Estimates/Conclusions Not n~1/r2 !! Mdot not constant! (ADIOS Blandford . Begelman 1999) The flow is 2 dimensional! (Blandford+Payne 82, Contopoulos and Lovelace 94 AGN Unification: Torus = MHD Wind) Mdot ~ r1/2, Edot ~ Mdot v2~r-1/2, Pdot ~ Mdot v ~ r0 10/28/2010 SEAL@GSFC
Flow line geometry From Konigl+Kartje (94), based on the models of Contopoulos + Lovelace (94) 10/28/2010 SEAL@GSFC
MHD Disk-Wind Solutions (Contopoulos+Lovelace94) • Self-similar prescription for radial-profiles “q” = radial scaling Magnetic flux: • Steady-state, axisymmetric MHD solutions (2.5D): (Prad=0) 5 “conserved” quantities: Energy, Ang.Mom., Flux, Ent., Rot. 10/28/2010 SEAL@GSFC
MHD Disk-Wind Solutions (Contopoulos+Lovelace94) Density x = r/rs LoS column density Ionization parameter (c.f. Ueda+03; Tueller+08) We seek “q=1” self-similar wind: • B(r,q) ~ N(q)/r • n(r,q) ~ F(q)/r (i.e. equal column per decade in radius) • LoS velocity ~ 1/r1/2 (Keplerian profile) • x(r,q) ~ G(q)/r (w/o attenuation) 10/28/2010 SEAL@GSFC
Simple Wind Solutions with n~1/r (q=1) Assume: M(BH) = 106 Msun, G~2 (single power-law), LX ~ 1042 erg/s, mdot ~ 0.5, rad. eff. ~ 10%, n(in) ~ 1010 cm-3 [cm-3] Poloidal velocity Density Launch site Toroidal velocity (Fukumura+10a) 10/28/2010 SEAL@GSFC
Simple Wind Solutions with n~1/r (q=1) Assume: M(BH) = 106 Msun, G~2 (single power-law), LX ~ 1042 erg/s, mdot ~ 0.5, rad. eff. ~ 10%, n(in) ~ 1010 cm-3 [cm-3] Poloidal velocity Launch site Toroidal velocity (Fukumura+10a) 10/28/2010 SEAL@GSFC
LoS Radiation Transfer Photoionization with XSTAR (e.g. Kallman+Bautista01) [cm-3] Ionization Distribution LoS Density 1D computational zones Radiation Source 10/28/2010 SEAL@GSFC
Flat AMD (Data) Holczer+(07) Modeling AMD with n~1/r (q=1) Moderately-ionized: (above Fe XVII) ~100-300 km/sec @ low ionization Highly-ionized: (Fe XXV/XXVI) ~1,000-3,000 km/sec @ high ionization Const. AMD velocity Flat AMD (Model) column ionization 10/28/2010 SEAL@GSFC
Modeling AMD with n~1/r 10/28/2010 SEAL@GSFC
Modeling Absorption Spectra Wind optical depth Line photo-absorption cross-section fij = oscillator strength DnD = broadening factor H(a,u) = Voigt function (e.g. Mihalas78) 10/28/2010 SEAL@GSFC
Basic Dogma: • All winds have the same velocity structure (v ~ r^{-1/2}) all the way to ~ ISCO • Their overall normalization is given by mdot at r ~ 1 • The observed diversity is due to their ionization status and the observer’s inclination angle. 10/28/2010 SEAL@GSFC
[O/UV] [X-ray] [Infrared] BAL QSO SED “torus?” ~1-10 pc “corona” ~AUs “big blue bump” ~lt days aox Gallagher(07) Disk Wind See; Elvis+(94) Richards+(06) aox = 0.384 log (f2 keV / f2500 Å) tells you X-ray weakness 10/28/2010 SEAL@GSFC NASA/CXC
Modeling QSO Outflows Photoionized Outflows with n ~ 1/r Log(density) Injected SED (Fn) • mdot = 0.5 • kT(in) = 5eV • GX = 2 • aOX = -2 Fukumura+(10b) 10/28/2010 SEAL@GSFC
AMD Production of CIV and FeXXV/XXVI • mdot = 0.5 • kT(in) = 5eV • GX = 2 • aOX = -2 10/28/2010 SEAL@GSFC
Correlations with Outflow Velocity Velocity Dependence on SED (X-ray Slope) • X-ray data of APM 08279+5255 from Chartas+(09) • Model from Fukumura+(10b) 10/28/2010 SEAL@GSFC
aox vs. L (2500A) (from Shemmer et al. 2005 10/28/2010 SEAL@GSFC
Line of Sight Contour in Velocity – Absorber Column Space • = - aox= 2 10/28/2010 SEAL@GSFC
Summary MHD disk-winds provide a promising unified account of the entire absorber phenomenology. This can serve a basic benchmark for further development and refinenent. • Key ingredients mdot (overall column normalization) SED (G, mainly aOX) q(Inclination angle) (these are not all independent parameters – correlation of L- aOX ) • The model implies that AGN are multiscale objects, governed (basically) by magnetic forces. • An instrument with higher throughput and resolution would be able to probe also the detailed velocity structure of these features and their variability to provide the density – velocity structure of the entire AGN flow. 10/28/2010 SEAL@GSFC
END 10/28/2010 SEAL@GSFC
*Acceleration Process(es) • 1. Compton-heated wind (e.g. Begelman+83, Woods+96) • “ Central EUV/X-ray heating a disk thermal-wind” • IssueToo large radii… • 2. Radiatively-driven (line-driven) wind • (e.g. Proga+00, Proga+Kallman04) • “UV radiation pressure accelerate plasma” • IssuesOverionization @ smaller radii… • Ionization state freezing out… • 3. Magnetocentrifugally-driven wind • “Large-scale B-field accelerate plasma” • Issue Unknown field geometry… 10/28/2010 SEAL@GSFC
Issues (Future Work) Wind Solutions (Plasma Field): • (Special) Relativistic wind • Radiative pressure (e.g. Proga+00;Everett05;Proga+Kallman04) Radiation (Photon Field): • Realistic SED (particularly for BAL quasars) • Different LoS between UV and X-ray (i.e. RUV > RX by x10…) • Including scattering/reflection (need 2D radiative transfer) (Ultimate) Goals: • Comprehensive understanding of ionized absorbers within a single framework (i.e. disk-wind) AGNs/Seyferts/BAL/non-BAL QSO with high-velocity outflows (e.g. PG 1115+080, H 1413+117, PDS 456 and more…) Energy budget between radiation and kinetic energy… 10/28/2010 SEAL@GSFC
Broad Absorption Line (BAL) QSOs • Became known with ROSAT/ASCA survey • Large C IV EW(absorb) ~ 20-50 A ~ 30,000 km/sec • ~10% of optically-selected QSOs • Faint (soft) X-ray relative to O/UV continua • High-velocity/near-relativistic outflows: • v/c ~ 0.04 - 0.1 (e.g. UV C IV) • v/c ~ 0.1 - 0.8 (e.g. X-ray Fe XXV) • High intrinsic column of ~ 1022 cm-2 (UV) • >~ 1023 cm-2 (X-ray) 10/28/2010 SEAL@GSFC
Review on Absorption Features: • Crenshaw, Kraemer & George 2003, ARAA, 41, 117 (Seyferts) • Brandt et al. 2009, arXiv:0909.0958 (Bright Quasars) 10/28/2010 SEAL@GSFC
Chandra survey Gallagher+(06) END 10/28/2010 SEAL@GSFC
r~ ai-1Fo(Bo/vo)2r* Mdot(mass loss rate) ~ 10-6 Mo/yr Fo (ai/1AU)5/2 (M/Mo)-1/2 (Bo/1G)2 ~ 6x1019 g/sec Fo (ai/1AU)5/2 (M/Mo)-1/2 (Bo/1G)2 ~ 6x1013-16 g/sec (ai/1AU)5/2 for M=108Mo, Fo=0.0-0.1, Bo=1-10G 10/28/2010 SEAL@GSFC
17. (Possible) complexity of UV/X-ray LoS Microlensing technique (e.g. Morgan+08; Chartas+09a) UV regions > X-ray regions (x ~10) 10/28/2010 SEAL@GSFC
10. Normal galaxies vs. BAL quasars Lya C IV Mg II Ha Hb Si IV Lya NV C IV broad absorption lines (P Cygni profiles) normal BAL 10/28/2010 SEAL@GSFC
Ramirez(08) 10/28/2010 SEAL@GSFC
2500 Å 2 keV ? Elvis+(94) Richards+(06) aox = 0.384 log (f2 keV / f2500 Å) tells you X-ray weakness UV-bright, X-ray-faint! Chandra BAL QSO survey Gallagher+(06) 12. Quasars – SED (UV/X-ray property) 10/28/2010 SEAL@GSFC
X-ray spectrum of NGC 3783 Netzer+(03) MCG 6-30-15 Side Notes Holczer+10 Crenshaw+03 10/28/2010 SEAL@GSFC
UV Luminosity vs.aox brighter in X-rays Define: Daox=aox -aox(Luv) fainter in X-rays log(Luv) (ergs s-1 Hz-1) 10/28/2010 SEAL@GSFC 228 SDSS Quasars with ROSAT(Strateva et al. 2005)
X-ray G ~ 1.7 – 2.1 Log(NH) ~ 23-24 T(var) ~ 3.3 days (~10 rg) XMM-Newton data Chartas+(09) 10/28/2010 SEAL@GSFC
(ii) Velocity dependence on LoS Face-down view (e.g. ~30deg) low NH, low v/c Optimal view (e.g. ~50deg) high NH, high v/c 10/28/2010 SEAL@GSFC Feb. 2010 @Japan