1 / 53

Accretion Disk MHD Winds as X-ray Absorbers in AGN and GBHC

Accretion Disk MHD Winds as X-ray Absorbers in AGN and GBHC. Demos Kazanas with Keigo Fukumura Ehud Behar (Technion) John Contopoulos (Academy of Athens). ApJ (2010), 715, 636 (FKCBa) ApJ (2010), 723, L228 (FKCBb). Credit: NASA/CXC. Acknowledgements to:. J. Garcia (CUA/GSFC)

duman
Download Presentation

Accretion Disk MHD Winds as X-ray Absorbers in AGN and GBHC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Accretion Disk MHD Winds as X-ray Absorbers in AGN and GBHC Demos Kazanas with Keigo Fukumura Ehud Behar (Technion) John Contopoulos (Academy of Athens) • ApJ (2010), 715, 636 (FKCBa) • ApJ (2010), 723, L228 (FKCBb) Credit: NASA/CXC 10/28/2010 SEAL@GSFC

  2. Acknowledgements to: J. Garcia (CUA/GSFC) T. Kallman (NASA/GSFC) T. Sakamoto (UMBC/GSFC) C. Shrader (USRA/GSFC) J. Turner (UMBC/GSFC) 10/28/2010 SEAL@GSFC

  3. Outflows are Ubiquitous in AGN(originally discovered in their UV spectra) 10/28/2010 SEAL@GSFC

  4. Considering that the formation of the proper ions is due to photoionization (i.e. the value of x = L /nr2 can be inferred, measurements of their velocities vcan be used to obtain the mass loss rate of the wind 10/28/2010 SEAL@GSFC

  5. X-ray Absorbers • Chandra and XMM-Newton discovered a host of absorption features in the X-ray band of wide ionization state and velocities, hinting of much richer wind structures than thought before. • (1) Moderate Outflows ~ various charge state • (~100-1,000 km/sec; Nh ~1021-22 cm-2) •  Many charge state from X-ray-bright AGNs • e.g. MCG-6-30-15, IRAS 13349+2438 • (2) Massive Fast Outflows ~ K-shell resonance • (v/c~0.1-0.7; Nh ~1023-24 cm-2) •  H/He-like ions from hard-X-ray-weak AGNs • e.g. PDS 456, PG 1211+143, APM 08279+5255 10/28/2010 SEAL@GSFC

  6. Radio-quiet Seyfert AGNs (HETGS) (RGS) • MCG-6-30-15: • (z = 0.007749) • Photoelectric • Absorption: • Lines • Edges slow fast slow fast “Warm Absorber” Chandra/HETGS Holczer+(10) • Slow ~ 100 km/sec @ low-x • High ~ 1,900 km/sec @ high-x • Integrated NH ~ 5.3 x 1021 cm-2 (see also Otani+96, Reynolds+97, Sako+03, Miller+08) 10/28/2010 SEAL@GSFC

  7. X-ray-Bright AGNs • QSO: IRAS 13349+2438: • (z = 0.10764) • X-ray bright, • IR-loud/radio-quiet QSO • X-ray obs. with ROSAT, • ASCA, Chandra, XMM-Newton • Ions with various charge state • Fe XVII ~ 300 km/sec • Potential velocity scatter • Integrated NH ~ 1.2x1022 cm-2 Chandra data Holczer+(07) 10/28/2010 SEAL@GSFC

  8. Narrow-Line Seyferts PG 0844+349 • “Narrow” Hb line < 2,000 km/sec • Weak O III/Hb ratio • Strong “Soft X-ray Excess” • Highly-blueshifted absorption lines (v/c ~ 0.2) Chandra/XMM-Newton data Pounds+(03) PG 1211+143 (v/c ~ 0.1) PDS 456 (v/c ~ 0.25) Pounds+Reeves(09) Reeves+(09) 10/26/2010 CRESST/UMBC

  9. Credit: NASA/CXC/PSU/M.Weiss/G.Chartas Broad Absorption Line (BAL) QSOs: APM 08279+5255 • ~10% of optically-selected QSOs • Faint X-ray relative to O/(F)UV continua • Broad C IV line ~ 2,000-30,000 km/sec • Highly-blueshifted ~ 10,000-30,000 km/sec z = 3.91 10/28/2010 SEAL@GSFC NRAO/AUI/NSF,STScI

  10. UV C IV doublet l7295 l7305 Ellison+(99) BAL QSO: UV Apsorptions • APM 08279+5255: • (z = 3.91) • Lensed QSO (x100) • Optically-bright • IR-loud, radio-quiet • High-velocity outflows • v/c~0.04-0.1 in C IV • (UV: Keck/HIRES) 10/28/2010 SEAL@GSFC Srianand+Petitjean(00)

  11. BAL QSO: X-ray Absorptions • High-velocity outflows: v/c~0.1-0.7 in Fe XXV/XXVI X-ray Absorption line (Fe XXV) Spectral index vs. wind velocity X-ray absorber Chandra/XMM/Suzaku Effect of ionizing spectrum(!?) Fe resonance transitions Brandt+(09); Chartas+(09) 10/28/2010 SEAL@GSFC

  12. Galactic Black Hole Candidates (GBHC) GRO J1655-40: • High ionization: log(x[erg cm s-1]) ~ 4.5 - 5.4 • Small radii: log (r[cm]) ~ 9.0 - 9.4 • High density: log(n[cm-3]) ~ 14 • M(BH)~7Msun • M(2nd)~2.3Msun Miller+(06) NASA/CXC/A.Hobart Chandra Data Miller+(08) 10/28/2010 SEAL@GSFC

  13. Can we make sense of all these diverse • Observations? • Fundamental Questions: • Geometry? • Spatial location? • Properties? • Physical origin? 10/28/2010 SEAL@GSFC

  14. Absorption Measure Distribution (AMD) AMD(x) = dNH / dlogx ~ (logx)p where x = L/(n r2) (5 AGNs) column (0.02 < p < 0.29) column ionization ionization Holczer+(07) Behar(09)  presence of nearly equal NH over ~4 decades in x (p~0.02) 10/28/2010 SEAL@GSFC

  15. Some Simple Estimates/Conclusions Not n~1/r2 !! Mdot not constant! (ADIOS Blandford . Begelman 1999) The flow is 2 dimensional! (Blandford+Payne 82, Contopoulos and Lovelace 94  AGN Unification: Torus = MHD Wind) Mdot ~ r1/2, Edot ~ Mdot v2~r-1/2, Pdot ~ Mdot v ~ r0 10/28/2010 SEAL@GSFC

  16. Flow line geometry From Konigl+Kartje (94), based on the models of Contopoulos + Lovelace (94) 10/28/2010 SEAL@GSFC

  17. MHD Disk-Wind Solutions (Contopoulos+Lovelace94) • Self-similar prescription for radial-profiles “q” = radial scaling Magnetic flux: • Steady-state, axisymmetric MHD solutions (2.5D): (Prad=0)  5 “conserved” quantities: Energy, Ang.Mom., Flux, Ent., Rot. 10/28/2010 SEAL@GSFC

  18. MHD Disk-Wind Solutions (Contopoulos+Lovelace94) Density x = r/rs LoS column density Ionization parameter (c.f. Ueda+03; Tueller+08) We seek “q=1” self-similar wind: • B(r,q) ~ N(q)/r • n(r,q) ~ F(q)/r (i.e. equal column per decade in radius) • LoS velocity ~ 1/r1/2 (Keplerian profile) • x(r,q) ~ G(q)/r (w/o attenuation) 10/28/2010 SEAL@GSFC

  19. Simple Wind Solutions with n~1/r (q=1) Assume: M(BH) = 106 Msun, G~2 (single power-law), LX ~ 1042 erg/s, mdot ~ 0.5, rad. eff. ~ 10%, n(in) ~ 1010 cm-3 [cm-3] Poloidal velocity Density Launch site Toroidal velocity (Fukumura+10a) 10/28/2010 SEAL@GSFC

  20. Simple Wind Solutions with n~1/r (q=1) Assume: M(BH) = 106 Msun, G~2 (single power-law), LX ~ 1042 erg/s, mdot ~ 0.5, rad. eff. ~ 10%, n(in) ~ 1010 cm-3 [cm-3] Poloidal velocity Launch site Toroidal velocity (Fukumura+10a) 10/28/2010 SEAL@GSFC

  21. LoS Radiation Transfer Photoionization with XSTAR (e.g. Kallman+Bautista01) [cm-3] Ionization Distribution LoS Density 1D computational zones Radiation Source 10/28/2010 SEAL@GSFC

  22. Flat AMD (Data) Holczer+(07) Modeling AMD with n~1/r (q=1) Moderately-ionized: (above Fe XVII) ~100-300 km/sec @ low ionization Highly-ionized: (Fe XXV/XXVI) ~1,000-3,000 km/sec @ high ionization  Const. AMD velocity Flat AMD (Model) column ionization 10/28/2010 SEAL@GSFC

  23. Modeling AMD with n~1/r 10/28/2010 SEAL@GSFC

  24. Modeling Absorption Spectra Wind optical depth Line photo-absorption cross-section fij = oscillator strength DnD = broadening factor H(a,u) = Voigt function (e.g. Mihalas78) 10/28/2010 SEAL@GSFC

  25. Basic Dogma: • All winds have the same velocity structure (v ~ r^{-1/2}) all the way to ~ ISCO • Their overall normalization is given by mdot at r ~ 1 • The observed diversity is due to their ionization status and the observer’s inclination angle. 10/28/2010 SEAL@GSFC

  26. [O/UV] [X-ray] [Infrared] BAL QSO SED “torus?” ~1-10 pc “corona” ~AUs “big blue bump” ~lt days aox Gallagher(07) Disk Wind See; Elvis+(94) Richards+(06) aox = 0.384 log (f2 keV / f2500 Å)  tells you X-ray weakness 10/28/2010 SEAL@GSFC NASA/CXC

  27. Modeling QSO Outflows Photoionized Outflows with n ~ 1/r Log(density) Injected SED (Fn) • mdot = 0.5 • kT(in) = 5eV • GX = 2 • aOX = -2 Fukumura+(10b) 10/28/2010 SEAL@GSFC

  28. AMD Production of CIV and FeXXV/XXVI • mdot = 0.5 • kT(in) = 5eV • GX = 2 • aOX = -2 10/28/2010 SEAL@GSFC

  29. Correlations with Outflow Velocity Velocity Dependence on SED (X-ray Slope) • X-ray data of APM 08279+5255 from Chartas+(09) • Model from Fukumura+(10b) 10/28/2010 SEAL@GSFC

  30. aox vs. L (2500A) (from Shemmer et al. 2005 10/28/2010 SEAL@GSFC

  31. Line of Sight Contour in Velocity – Absorber Column Space • = - aox= 2 10/28/2010 SEAL@GSFC

  32. Summary MHD disk-winds provide a promising unified account of the entire absorber phenomenology. This can serve a basic benchmark for further development and refinenent. • Key ingredients  mdot (overall column normalization) SED (G, mainly aOX) q(Inclination angle) (these are not all independent parameters – correlation of L- aOX ) • The model implies that AGN are multiscale objects, governed (basically) by magnetic forces. • An instrument with higher throughput and resolution would be able to probe also the detailed velocity structure of these features and their variability to provide the density – velocity structure of the entire AGN flow. 10/28/2010 SEAL@GSFC

  33. END 10/28/2010 SEAL@GSFC

  34. *Acceleration Process(es) • 1. Compton-heated wind (e.g. Begelman+83, Woods+96) • “ Central EUV/X-ray  heating a disk  thermal-wind” • IssueToo large radii… • 2. Radiatively-driven (line-driven) wind • (e.g. Proga+00, Proga+Kallman04) • “UV radiation pressure  accelerate plasma” • IssuesOverionization @ smaller radii… •  Ionization state freezing out… • 3. Magnetocentrifugally-driven wind • “Large-scale B-field  accelerate plasma” • Issue  Unknown field geometry… 10/28/2010 SEAL@GSFC

  35. Issues (Future Work) Wind Solutions (Plasma Field): • (Special) Relativistic wind • Radiative pressure (e.g. Proga+00;Everett05;Proga+Kallman04) Radiation (Photon Field): • Realistic SED (particularly for BAL quasars) • Different LoS between UV and X-ray (i.e. RUV > RX by x10…) • Including scattering/reflection (need 2D radiative transfer) (Ultimate) Goals: • Comprehensive understanding of ionized absorbers within a single framework (i.e. disk-wind) AGNs/Seyferts/BAL/non-BAL QSO with high-velocity outflows (e.g. PG 1115+080, H 1413+117, PDS 456 and more…)  Energy budget between radiation and kinetic energy… 10/28/2010 SEAL@GSFC

  36. Broad Absorption Line (BAL) QSOs • Became known with ROSAT/ASCA survey • Large C IV EW(absorb) ~ 20-50 A ~ 30,000 km/sec • ~10% of optically-selected QSOs • Faint (soft) X-ray relative to O/UV continua • High-velocity/near-relativistic outflows: • v/c ~ 0.04 - 0.1 (e.g. UV C IV) • v/c ~ 0.1 - 0.8 (e.g. X-ray Fe XXV) • High intrinsic column of ~ 1022 cm-2 (UV) • >~ 1023 cm-2 (X-ray) 10/28/2010 SEAL@GSFC

  37. Review on Absorption Features: • Crenshaw, Kraemer & George 2003, ARAA, 41, 117 (Seyferts) • Brandt et al. 2009, arXiv:0909.0958 (Bright Quasars) 10/28/2010 SEAL@GSFC

  38. Chandra survey Gallagher+(06) END 10/28/2010 SEAL@GSFC

  39. r~ ai-1Fo(Bo/vo)2r* Mdot(mass loss rate) ~ 10-6 Mo/yr Fo (ai/1AU)5/2 (M/Mo)-1/2 (Bo/1G)2 ~ 6x1019 g/sec Fo (ai/1AU)5/2 (M/Mo)-1/2 (Bo/1G)2 ~ 6x1013-16 g/sec (ai/1AU)5/2 for M=108Mo, Fo=0.0-0.1, Bo=1-10G 10/28/2010 SEAL@GSFC

  40. 17. (Possible) complexity of UV/X-ray LoS Microlensing technique (e.g. Morgan+08; Chartas+09a)  UV regions > X-ray regions (x ~10) 10/28/2010 SEAL@GSFC

  41. 10. Normal galaxies vs. BAL quasars Lya C IV Mg II Ha Hb Si IV Lya NV C IV broad absorption lines (P Cygni profiles) normal BAL 10/28/2010 SEAL@GSFC

  42. Ramirez(08) 10/28/2010 SEAL@GSFC

  43. 10/28/2010 SEAL@GSFC

  44. 2500 Å 2 keV ? Elvis+(94) Richards+(06) aox = 0.384 log (f2 keV / f2500 Å)  tells you X-ray weakness UV-bright, X-ray-faint! Chandra BAL QSO survey Gallagher+(06) 12. Quasars – SED (UV/X-ray property) 10/28/2010 SEAL@GSFC

  45. X-ray spectrum of NGC 3783 Netzer+(03) MCG 6-30-15 Side Notes Holczer+10 Crenshaw+03 10/28/2010 SEAL@GSFC

  46. UV Luminosity vs.aox brighter in X-rays Define: Daox=aox -aox(Luv) fainter in X-rays log(Luv) (ergs s-1 Hz-1) 10/28/2010 SEAL@GSFC 228 SDSS Quasars with ROSAT(Strateva et al. 2005)

  47. X-ray G ~ 1.7 – 2.1 Log(NH) ~ 23-24 T(var) ~ 3.3 days (~10 rg) XMM-Newton data Chartas+(09) 10/28/2010 SEAL@GSFC

  48. (ii) Velocity dependence on LoS Face-down view (e.g. ~30deg)  low NH, low v/c Optimal view (e.g. ~50deg)  high NH, high v/c 10/28/2010 SEAL@GSFC Feb. 2010 @Japan

  49. 10/28/2010 SEAL@GSFC

  50. 10/28/2010 SEAL@GSFC

More Related