1 / 33

Phonon dispersion calculation

Phonon dispersion calculation. spin-relaxation rates depends on τ m Momentum relaxation time ( τ m )  electron-phonon scattering electron-phonon scattering  phonon spectrum (dispersion). Lattice vibrations in mono-atomic crystals. Lattice vibrations in ….

Download Presentation

Phonon dispersion calculation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Phonon dispersion calculation • spin-relaxation rates depends on τm • Momentum relaxation time (τm ) electron-phonon scattering • electron-phonon scattering phonon spectrum (dispersion)

  2. Lattice vibrations in mono-atomic crystals Daryoush Shiri, IQC

  3. Lattice vibrations in … Daryoush Shiri, IQC

  4. Lattice vibrations in Diatomic lattice… It is instructive to consider the boundaries and limiting cases e.g. k=0 and k=π/a. WHAT if we have a more complex solid? e.g. Bulk Si , ge, GaAs crystals Nanowires Amorphous Si, oxide, atomic clusters u Daryoush Shiri, IQC

  5. Dynamical Matrix Method • The generalization of the previous method to large solids • Challenges: Computationally intensive for large number of atoms • In the last example (1 and 2 atoms in each unit cell of a periodic 1D solid)  we found 1 and 2 modes, respectively. • What about bulk Si and Ge? • What about a nanowire? W. L. Park et al, Nano Letters, 19 August 2008 Daryoush Shiri, IQC

  6. Dynamical Matrix Method Daryoush Shiri, IQC

  7. Daryoush Shiri, IQC

  8. Daryoush Shiri, IQC

  9. Daryoush Shiri, IQC

  10. Daryoush Shiri, IQC

  11. Daryoush Shiri, IQC

  12. Daryoush Shiri, IQC

  13. Daryoush Shiri, IQC

  14. Daryoush Shiri, IQC

  15. Daryoush Shiri, IQC

  16. Daryoush Shiri, IQC

  17. Daryoush Shiri, IQC

  18. Daryoush Shiri, IQC

  19. Daryoush Shiri, IQC

  20. Daryoush Shiri, IQC

  21. Daryoush Shiri, IQC

  22. SIESTA calculation of phonon spectrum bulkGe_phonon.fdf STEP 1: Building a super-cell from the unit cell of a given structure e.g. bulk Si or Ge (2 atoms per unit cell) Dynamic Matrix Equation is solved in SIESTA using Vibra package (see: http://departments.icmab.es/leem/siesta/Documentation/Tutorials/index.html ) Daryoush Shiri, IQC, Waterloo

  23. SIESTA …. • LOCAL MACHINE: • After downloading, unzipping & installing SIESTA you can go directly to Vibra/Src and copy your .fdffiles there. Make sure you have a Fortran compiler to compile fcbuild.f, Vibra.fetc • SUPERCOMPUTING FACILITY: • If you have access to e.g. SHARCNET (www.sharcnet.ca), just copy /Srcfrom your local machine to your work directory. Daryoush Shiri, IQC, Waterloo

  24. bulkGe_phonon_2014.ifc.fdf SIESTA …. • STEP 2: Displace the atoms and calculate the IFC • $siesta path/./siesta < example.ifc.fdf > example.ifc.out • OR in my example I used MPI version of SIESTA on Sharcnet Daryoush Shiri, IQC, Waterloo

  25. SIESTA …. • BandLinesScale pi/a • %block BandLines • 1 0.000 0.000 0.000 \Gamma • 45 2.000 0.000 0.000 X • 17 2.000 0.500 0.500 K • 48 2.000 2.000 2.000 \Gamma • 1.000 1.000 1.000 L • %endblockBandLines • STEP 3: Computing Dynamical matrix and Diagonalize • A Fourier transform carries Force matrix from position to momentum(k-space) • K grid points are defined in example.fdf file. • $path/Utils/Vibra/Src/./vibrator <bulkGe_phonon.fdf •  OUTPUT: Ge_bulk_2014.bands • $path/ ./bandline.x < Ge_bulk_2014.bands > Ge_bulk_2014.gnubands.dat Daryoush Shiri, IQC, Waterloo

  26. SIESTA calculated phonon spectrum of Bulk Ge 1/cm = 2.997 93 x 10+10 Hz • BandLinesScale pi/a • %block BandLines • 1 0.000 0.000 0.000 \Gamma • 45 2.000 0.000 0.000 X • 17 2.000 0.500 0.500 K • 48 2.000 2.000 2.000 \Gamma • 1.000 1.000 1.000 L • %endblockBandLines Daryoush Shiri, IQC, Waterloo

  27. LO TO

  28. [110] Si nanowire d = 1.7nm Phonon dispersion Electronic dispersion From: J. Appl. Phys. 104, 053716 2008

  29. Daryoush Shiri, IQC

  30. Quantization of phonon modes

More Related