260 likes | 431 Views
Using AI and Machine Learning to study Expressive Music Performance: Project Survey and First Report. Gerhard Widmer. Keywords:. Machine Learning Data Mining Expressive Music Performance. Outline. 1. Introduction 2. Expressive Music Performance 3. The Base Research Framework
E N D
Using AI and Machine Learning to study Expressive Music Performance:Project Survey and First Report Gerhard Widmer
Keywords: • Machine Learning • Data Mining • Expressive Music Performance
Outline 1. Introduction 2. Expressive Music Performance 3. The Base Research Framework 4. A Brief Activity and Status Report 5. A New Data Mining Approach 6. Conclusion
Apply AI methods • Developing computational methods • Use machine learning and data mining • Build formal models
Make music moving • Detectpatter and regularities • Performing artist • Large Collections of performances
3. Inducting Performance Models from Real performances : The Base Research Framework
1.由音樂家的表演獲得高品質的演出,並轉成機器可讀的1.由音樂家的表演獲得高品質的演出,並轉成機器可讀的 形式 • 2.將音符編碼成機器可讀的形式並對應到樂譜中 • 3.取出拍子,響度分別比較從樂譜和演奏者實際表現,並 把這些數據轉換成電腦可以分析 • 4.分析音樂結構(韻律,音調) • 5.開發機器學習的演算法,然後有系統的連接音樂結構方 面典型表達的特徵,還有制訂他們的符號規則 • 6.從不同的音樂風格中執行有系統的實驗 • 7.從它們的性質去分析學習結果
4.1 Real-world Performance Data • It is impossible to extract precise performance information. • The main source of performance data are special pianos. ( Bosendorfer SE290)
4.2 Score and Expression Extraction • Beat induction • Quantization • Inferring the correct or intended enharmonic spelling of notes.(eg : G# VS. Ab)
4.3 Musical Structure Analysis • Segmentation • Categorization and motiuic analysis • Implication Realization Model
4.4 Mode Building via Inductive Learning : Initial Investigations • Settings of the rule parameters better then baseline.
5. Learning Partial Characterizing Models : A New Data Mining Approach
5.1 The Goal : Learning Partial Models • Partial Characterizing Models.
5.2 Data and Target Concepts • In the timing dimension • In dynamic • In articulation
Conclusion • 精確的測量出一些演出者對於音樂風格的表演標準。 • 到目前為止,我們已進行這個計劃作為一個純粹的科學,基礎研究,然而在未來實際可能的應用和開發的結果也將予以研究。
感想: • 在使用machine learning & data mining 之前的前置作業要做好,這樣才可以得到比較好的實驗結果。