340 likes | 507 Views
Dynamic Graph Transformation Systems. Hernán Melgratti IMT Lucca Institute for Advance Studies Joint Work with Roberto Bruni Dipartimento di Informatica, Università di Pisa. Join Calculus. Join processes can be seen as dynamic and reconfigurable, coloured nets. Join Calculus.
E N D
Dynamic Graph Transformation Systems Hernán Melgratti IMT Lucca Institute for Advance Studies Joint Work with Roberto Bruni Dipartimento di Informatica, Università di Pisa
Join Calculus • Join processes can be seen as dynamic and reconfigurable, coloured nets Hernán Melgratti@IMTLucca
Join Calculus • Join processes can be seen as dynamic and reconfigurable, coloured nets Hernán Melgratti@IMTLucca
Join Calculus • Join processes can be seen as dynamic and reconfigurable, coloured nets a x b x ax xb Hernán Melgratti@IMTLucca
a a a c c b b b x x b b x x def ax xb def ax xb in aa | cb in ab | cb Join Calculus • Join processes can be seen as dynamic and reconfigurable, coloured nets a a c x b x def ax xb in aa | ac Hernán Melgratti@IMTLucca
a x c c y y x ax def cy yx incc Join Calculus • Join processes can be seen as dynamic and reconfigurable, coloured nets Hernán Melgratti@IMTLucca
c a c y y b x c c y y x def ax def cy yx incc cy ay in ab | cc Join Calculus • Join processes can be seen as dynamic and reconfigurable, coloured nets a a b x c c y y x def ax def cy yx incc in aa | ab Hernán Melgratti@IMTLucca
T-typed Graphs DPO Graph Grammar The initial T-typed graph The graph of types The set of productions Left-hand-side Interface Span of injective morphisms Right-hand-side Hernán Melgratti@IMTLucca
l r p : L K R m k h G D H d b DPO Rewriting Step Hernán Melgratti@IMTLucca
Towards Dynamic Productions Hernán Melgratti@IMTLucca
Towards Dynamic Productions p: Hernán Melgratti@IMTLucca
Towards Dynamic Productions p: n1 n1 n Hernán Melgratti@IMTLucca
Towards Dynamic Productions Gp p: n1 n1 n Hernán Melgratti@IMTLucca
Towards Dynamic Productions Gp p: n1 n1 g f n n m Hernán Melgratti@IMTLucca
Towards Dynamic Productions Gp p: n1 n1 n1 m1 f1 g f n n m Hernán Melgratti@IMTLucca
Towards Dynamic Productions Gp p: n1 n1 n1 m1 f1 g f n n m q: Hernán Melgratti@IMTLucca
Towards Dynamic Productions Gp p: n1 n1 n1 m1 f1 g f n n m q: … Hernán Melgratti@IMTLucca
g f m r s t p Towards Dynamic Productions Gp p: n1 n1 n1 m1 f1 g f n n m q: … r Hernán Melgratti@IMTLucca
f’ g’ q: q: q’: m’ r s t p t’ s’ Towards Dynamic Productions Gp p: n1 n1 n1 m1 f1 g g f f n m n m q: … q: … q’: … r s t p r Hernán Melgratti@IMTLucca
The initial T-typed graph The graph of types The set of productions T-typed Graphs Dynamic Graph Grammar (DGG) Injective Morphism A DGG over the graph of type T Tp Injective Morphism between Tp-typed Graph Hernán Melgratti@IMTLucca
L K K’ r’ l T m k k’ h T G H D D’ b d Dynamic rewriting Hernán Melgratti@IMTLucca
Encoding the Join Calculus • A channel (or place) x is encoded as a node n • The actual name of the channel is given by an arc x:n n • Any firing rule is encoded as a production Hernán Melgratti@IMTLucca
Encoding a Join Process P • The graph of types m Where fn (P ) dn(P ) = { x1, x2, x3 } x3 x1 x2 Hernán Melgratti@IMTLucca
m y x m m y x Encoding a Join Process P • A message xy Hernán Melgratti@IMTLucca
Encoding a Join Process P • A message xy m y x m y x Hernán Melgratti@IMTLucca
u1 uk u1 uk m m … … n1 nk n1 nk x1 xk x1 xk Encoding a Join Process P • A definition x1u1 |…| xkuk Pi Hernán Melgratti@IMTLucca
nu m y u nu nu m m nx x nx nx x x nv nv nv m m m m ny ny ny y y y m m m x x z z z x u y Example x is a defined name • P =defxu defyv vy inyu | xyinxz z is a free name Hernán Melgratti@IMTLucca
nu m y u nu nu m m nx x nx nx x x nv nv nv m m ny ny ny u u u’ y y y m m m m m z z z y y’ y m m m x x x Example Hernán Melgratti@IMTLucca
Theorem • For any Join process P • If P P’ using JiPi then Q s.t. and Q P’ • If , then P’ s.t P P’ using JiPi and Hernán Melgratti@IMTLucca
Tb g Ta A chain of types Refined Type f m n Ta Tb n n f m g DGG as GG • We start by defining a graph of types for representing the tree of types created dynamically Hernán Melgratti@IMTLucca
DGG as GG • A typed graph over a refined type Tb Ta f n m n n f m Tb Ta Tb Ta g f n m n n f m g Hernán Melgratti@IMTLucca
Tb Ta Ta Ta n n n n n n f m Ta Tb n n f m g DGG as GG • The refined version of productions p: n1 n1 n1 m1 f1 Hernán Melgratti@IMTLucca
Theorem Hernán Melgratti@IMTLucca
Final Remarks • DGG offers a convenient level of abstraction for describing reflexive systems • DGG can be simulated by ordinary GG • Future works: • To study independent derivations, parallelism, process semantics, unfolding semantics and event structure semantics • To show that concurrency is preserved by our encoding • To consider other approaches (like SPO) Hernán Melgratti@IMTLucca