270 likes | 281 Views
CS412/413. Introduction to Compilers and Translators March 15, 1999 Lecture 19: Object types. Administration. Programming Assignment 3, Part I due Friday Reading: Appel, Chapter 14. Abstraction Mechanisms.
E N D
CS412/413 Introduction to Compilers and Translators March 15, 1999 Lecture 19: Object types
Administration • Programming Assignment 3, Part Idue Friday • Reading: Appel, Chapter 14 CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Abstraction Mechanisms • Last time: various ways of aggregating several pieces of data to create a user-defined data type • Records—set of named fields with types • Abstract types—pair of abstract type (interface) and concrete type (implementation) • One-to-one binding • Interface defines only operations (hence abstract); encapsulates implementation • Implementation known at link time -- clients are insulated from changes, but harder to optimize TA TC CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Java Classes as Abstract Types • Source code for a class defines the concrete type (implementation) • Interface defined by public variables and methods of class • Compiler automatically decides interface based on contents of .class file (unlike Iota, with .int files) • Interface checked against implementation at run time! CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
TA TC1 TC2 TC3 TC4 Multiple Implementations • Allow multiple implementations (concrete types) for any given abstract type • Introduces named, purely abstract types • Implementation for typeoperations known only atrun-time • Code for abstract type operations not known until operations actually invoked • Can determine code to execute at run time by looking up in dispatch vector CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Multiple Impls in Java interface Point { float x(); float y(); } class XYPoint impls Point { private float x_, y_; public float x() { return x_; } ... } class Polar impls Point { private float r, theta; public float x() { return r*cos(theta); } … } Point XYPoint (a) RTPoint(a) XYPoint (c) RTPoint(a) What is this arc? CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Subtypes • Idea: one interface can extend another by adding more operations interface Point { float x(); float y(); } interface ColoredPoint extends Point { float x(); float y(); Color color(); } Point ColoredPoint is a subtype of ColoredPoint Point CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Subtype properties If type S is a subtype of type T (S T): A value of type S may be used wherever a value of type T is expected (e.g., assignment to a variable, passed as argument, returned from method) Point x; ColoredPoint y; ... x = y; ColoredPoint Point CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
I2 C2 (abstract) I C (abstract) C (abstract) I Subtypes in Java interface I extends I2 { … } class C implements I { … } class C extends C2 C2 (concrete) inherits C (concrete) CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Subtype hierarchy • Introduction of subtype relation creates a hierarchy of types: subtype hierarchy I1 C1 type or subtype hierarchy I2 I3 C4 C2 C3 class hierarchy C5 CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Subtype Subset S T values(S) values(T) “A value of type S may be used wherever a value of type T is expected” values of type S values of type T CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Static Semantics values(S) values(T) A|– E : S A|– E : T A|– S T “S is a subtype of T in environment A” CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Subtyping axioms • Subtype relation is reflexive A|– T T • Transitive: A|– S T A|– R S A|– R T • Defines an ordering on types (pre-order) • Rules are needed to define judgement on various type kinds (primitives, records, &c) CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Implementing Type-checking • Problem: static semantics is supposed to find a type for every expression, but expressions have (in general) many types • Which type to pick? I1 C1 I2 I3 C4 C2 C3 C5 CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Principal Type • Idea: every expression has a principal type that is the most-specific type of the expression • Subsumption rule: A|– E :Tp A|– TpT A|– E :T • Using subsumption rule, can infer all supertypes if principal type is used I1 C1 I2 I3 C4 C2 C3 C5 CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Type-checking interface • Old method for checking types: abstract class ASTNode { abstract Type typeCheck(SymTab A); // Return the principal type of this// statement or expression } • No changes in interface needed to support subtyping, except interpretation of result of typeCheck CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Type-checking rules • Rules for checking code must allow a subtype where a supertype was expected • Old rule for assignment: id : T A A |– E : T A |– id = E; : T What needs to change here? CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
A |– E :Tp A |– TpT A |– E :T id : T A A |– E : T A |– id = E; : T Type-checking code class Assignment extends ASTNode { String id; Expr E; Type typeCheck(SymTab A) { Type Tp = E.typeCheck(A); Type T = A.lookupVariable(id); if (Tp.subtypeOf(T)) return T; else throw new TypecheckError(E); } } CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Unification • Some rules more problematic: if • Rule: A |– E : bool A |– S1 : T A |– S2 : T A |– if ( E ) S1 else S2 : T • Problem: suppose S1 has principal type T1,S2 has principal type T2. Old check: T1 = T2 . New check: need principal type T. How to unify T1 , T2 ? CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Unification in subtype hierarchy • Idea: unified principal type is least common ancestor in type hierarchy LCA(C3, C5) = I1 I1 C1 I2 I3 Logic: I1 must be same as or subtype of any type that could be the type of both a value of type C3 and a value of type C5 C4 C2 C3 C5 CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Explicit vs Structural subtypes • Java: all subtypes explicitly declared, name equivalence for types. Subtype relationships inferred by transitive extension. • Languages with structural equivalence (e.g., Modula-3): subtypes inferred based on structure of types; no extends declaration • Same checking done in each case; explicitly declared subtypes must follow rules for recognizing subtypes implicitly CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
x x y y c T S Testing subtype relation • Subtyping for recordsS T means S has at least the fields of T {x: int, y: int, c: Color} { x: int, y: int } • Implementation: CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
x z z y Subtype rule for records {x: int, y: int, c: Color} { x: int, y: int } i ( ai : Ti ) S A|– S {…, ai: Ti ,…} • Question: what about allowing field types to vary? • If Point ColoredPoint, should we allow{ p: ColoredPoint, z: int } { p: Point, z: int } ? p x p y c CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Field Invariance Try { p: ColoredPoint } { p: Point } x: {p: Point} y: {p: ColoredPoint} x = y; x.p = new 3DPoint( ); • Mutable (assignable) fields must be invariant under subtyping Point ColoredPoint 3DPoint CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Covariance • Immutable record fields may change with subtyping (may be covariant) • Suppose we allow variables to be declared final -- x : final int • Safe: { p: final ColoredPoint, z: int } { p: final Point, z: int } p x p x y z z y c CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Immutable record subtyping ( ai : T’i ) S A |– T’i Ti A|– S {…, ai: Ti ,…} • Corresponding fields may be subtypes; exact match not required CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers
Summary • Multiple implementation of abstract types special case of subtyping • Subtyping characterized by new judgement: A|– S T • Old judgement A|– E :T plus subsumption rule, defn. of subtype relation defines new type-checking process • Mutable fields must be invariant in subtype relation; immutable fields may be covariant CS 412/413 Introduction to Compilers and Translators -- Spring '99 Andrew Myers