1 / 33

Equilibrium & Non-Equilibrium Ionization in Metal Ion Absorbers

This research explores the photoionization properties of metals in minihalo clouds and investigates the relationship between high-velocity clouds (HVCs), dwarfs, and ionized absorbers. The study focuses on the equilibrium and non-equilibrium ionization processes in metal ion absorbers.

dwightb
Download Presentation

Equilibrium & Non-Equilibrium Ionization in Metal Ion Absorbers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. From HVCs to WHIM: Equilibrium & Non-Equilibrium Ionization in Metal Ion Absorbers Orly Gnat & Amiel Sternberg Tel Aviv University ISRAEL

  2. HI High-Velocity Clouds  Wakker et al. 2003 ApJS, 146, 1

  3. High-Velocity Metal Absorbers Sembach et al. 2003, ApJ, 146, 165S • High-velocity gasprobed by UV/optical metal-line absorption. (Sembach et al. 1999, 2000, 2002, 2003; Murphy et al. 2000; Wakker et al. 2003; Collins et al. 2004, …)

  4. Absorption toward Mrk 509 & PKS 2155-304 log column cm-2 C IV 1548.2 Å 13.5 - >14.20 N V 1238.8 Å <13.08 - <13.24 Si III 1012.5 Å 12.44 - 13.31 Si IV 1393.8 Å <12.33 - >13.44 S III 1190.2 Å <13.68 - <13.93 O VI 1031.9 Å 13.56 - 13.93 Collins et al. 2004 ApJ, 605, 216

  5. Key questions: • What are the photoionization properties of metals in minihalo clouds? • Are the HI CHVCs, dwarfs & ionized-absorbersrelated objects?

  6. Hot ionized Warm ionized Warm neutral Minihalo models: H+He properties • Warm = 104K • Spherical symmetry • In DM halos • External HIM Pressure • Ionizing field Sternberg, McKee & Wolfire 2002 ApJS 143, 419 • Hypothesis:CHVCs trace DM substructurein Galactic halo / Local Group (Blitz et al. 1999, Braun & Burton 1999) • Explicit minihalo Models for: • LG dwarfs (Leo A, Sag DIG) • HI CHVCs (Sternberg, McKee & Wolfire 2002) • Hydrostatic equilibrium • Radiative Transfer Dark Matter Minihalo

  7. Minihalo models – H+He Results: • Dwarf Galaxy model (gravitationally confined): • Mvir=2x109 M , Mgas=2x107 M , P/k=1 cm-3K • Best fit: typical LCDM Burkert halo • CHVC model (pressure confined): • Mvir=1x108 M , Mgas=1x106M , P/k=50 cm-3K • Multi-phased cores expected. • Implied distance: ~150 kpc. Sternberg, McKee & Wolfire 2002 ApJS 143, 419

  8. Dark matter LCDM Burkert profiles. Virial masses: 108 – 2x109 Mʘ. Gas 106 – 107 Mʘ , T=104K. P/kB: 0.01–50 cm-3K. Metallicity: 0.1-0.3 solar. Metagalactic radiation field. Metal absorbers – model parameters Moore et al. 2002

  9. Metagalactic radiation field IR optical UV EUV X-ray nJn[erg s-1 cm-2 sr-1 ] Lyman limit 0.25 keV Jn0 = 2 x 10-23 cgs n[Hz]

  10. 8.2 eV Si II Low-Ions 10.4 eV S II 11.3 eV C II 13.6 eV H II High-Ions 16.4 eV Si III 23.3 eV S III 33.5 eV Si IV 47.9 eV C IV 77.5 eV N V 113.9 eV O VI Metals: Ionization potentials

  11. Step 1: H/He gas density profile; ionization structure; Local radiation field. • Step 2: • CLOUDY ionization state (Ferland, 1998). • Integrate line-of-sight columns. r Metals photo-ionization structure radiative transfer (spherical),

  12. Dwarf-scale halos Photoionized models - Results CHVCs models – High bounding pressures (~50 cm-3K) low ionization. Not enough high ions: E.g. - CIV column: Observed - ~1x1014 cm-2 CHVC Model - 3x1011 cm-2

  13. Example: Dwarf-scale halo • High mass: Mvir = 2 x 109 Mʘ, Burkert halo. • Mgas = 2 x 107 Mʘ,Metallicity = 0.3 solar. • Low Pressure: 0.1 cm-3K. • Maximal radiation field. Nicastro et al. 2002 ApJ, 573, 157

  14. IF Warm neutral Hot ionized Warm ionized total H density neutral H Dwarf-scale halo: volume densities density [cm-3] Radius [kpc]

  15. Dwarf-scale halo: column densities C IV : model: 1.5 x 1014 cm-2 observed: (0.3 – 2) x 1014 cm-2 O VI : model: 1 x 1013 cm-2 observed: (4 - 8) x 1013 cm-2 Column density [cm-2] Impact parameter [kpc]

  16. Dwarf Model versus observations: Nmodel / Nobserved Impact parameter [kpc]

  17. C IV : 1 x 1014 cm-2 observed: (0.3 – 2) x 1014 cm-2 O VI : 8 x 1012 cm-2 observed: (3 - 8) x 1013 cm-2 Ionized dwarf-scale halo: columns Mgas = 9.5 x 105 Mʘ Column density [cm-2] Impact parameter [kpc]

  18. Summary: photoionized clouds • CHVC-scale models – not enough high-ions. • Dwarf-scale models -Match to observed metal columns requires: • Metallicity ~ 0.3 solar. • Low pressure ( ≤1 cm-3 K ). • Maximal ionizing spectrum. • Ionized starless “dwarf galaxies” could be detected as metal-ion absorbers. • Except for O VI→ collisional processes… Gnat & Sternberg 2004 ApJ, 608, 229

  19. Turbulent Mixing Layers log ( NCIV / NOVI ) Shock Ionization Conductive Interfaces Cooling Flows Fox et al. 2005 ApJ 630, 332 log ( NNV / NOVI ) Non-Equilibrium Collisional Processes?

  20. Non-Equilibrium Collisional Processes • Time scale for change in temperature: tTemp • Time scale for change in ionization state: tIonization • Non-equilibrium: tTemp<< tIonization tc (cooling) tH (heating) tr (cooling) ti (heating)

  21. Non-Equilibrium Collisional Processes? • Conductive Interfaces Surrounding Evaporating Clouds • Time-Dependent Radiative Cooling

  22. HI CHVC model cloud boundary: 1.3 kpc PHIM = 50 cm-3K THIM = 2x106 K (Galactic corona) photoionized cloud conductive interface Temperature [K] heat flow OVI HIM (hot) density [cm-3] CIV Radius [kpc] cloud evaporates Radius [kpc] Conductive interfaces – work in progress: • Non-equilibrium ionization in the flow. WIM (warm) to 2 CHVC radii: CIV central column ~10 times larger OVI central column ~106 times larger

  23. Non–Equilibrium Radiative Cooling • Cooling is faster than recombination(tc<<tr) • Gas stays “over-ionized” • Independent of gas density • Modified ionization affects cooling rates:for over-ionized gas cooling is suppressed • Cooling rate depends on metallicity

  24. H He C N O Ne Mg Si S Fe Rate coefficients (T) Coolingrate (xi) Numerical Computation • Cooling from CIE at T>5x106K. • Follow time-dependent ionizationdxi/dt=… ~ • Step 1: No Photoionization • dxi/dT independent of density • …But depends on metallicity • The energy equation (Cloudy Cooling) dT/dt=…

  25. time Results: Ionization - Hydrogen Equilibrium Non-Equilibrium 100 10-1 10-2 104 105 106 104 105 106 Temperature (K) Temperature (K) Recombination Lag

  26. Results: Ionization - Carbon Equilibrium Non-Equilibrium 100 10-1 10-2 104 105 106 104 105 106 Temperature (K) Temperature (K)

  27. Results: Ionization – Z dependence 100 equilibrium Z = 2 Z = 1 Z = 10-1 Z = 10-2 Z = 10-3 10-1 xOVI 10-2 10-3 104 105 106 Temperature (K)

  28. He Cooling Metal Line Cooling Hydrogen Cooling (Lya) Bremsstrahlung Results: CIE Cooling Z = 2 Z = 1 Z = 10-1 Z = 10-2 Z = 10-3 10-21 10-22 Leq (erg cm3 s-1) cooling efficiency 10-23 10-24 104 105 106 107 108 Temperature (K)

  29. Equilibrium Non-Equilibrium time Results: Non-Equilibrium Cooling

  30. Turbulent Mixing Layers log ( NCIV / NOVI ) Shock Ionization Conductive Interfaces Cooling Flows log ( NNV / NOVI ) Results: Diagnostic Ratios

  31. High Velocity Metal Absorbers Fox et al. 2005 ApJ, 630, 332

  32. Time-Dependent Cooling - Summary • Equilibrium and Non-EquilibriumIonization States and Cooling Efficiencies ofH, He, C, N, O, Ne, Mg, Si, S, & Fe,For 104 < T < 108 Kand 10-3 < Z < 2 solar. • Isochoric / Isobaric – conditions & results. • Impact of Self Radiation.

  33. Future Work • Photoionization by External Radiation • Cooling Columns in Flows • Applications - E.g.: • High-velocity ionized clouds &the Galactic Halo (E.g.: Sembach & Savage 92, Spitzer 1996) • IGM - WHIM (E.g.: Tripp et al. 00, Shull et al. 03, Richter et al. 03, Sembach et al. 04, Nicastro et al. 05, Savage et al. 05) • AGNs • Galaxy Clusters and Groups

More Related