230 likes | 349 Views
BIOL 301 Guest Lecture: Reasoning Under Uncertainty (Intro to Bayes Networks) Simon D. Levy CSCI Department 8 April 2010. Rev. Thomas Bayes (1702-1761). Review of Bayes’ Rule. From the Product Rule:. P( A | B ) = P( A & B ) / P(B). P( A & B ) = P( A | B ) * P( B ).
E N D
BIOL 301 Guest Lecture: Reasoning Under Uncertainty(Intro to Bayes Networks)Simon D. LevyCSCI Department8 April 2010
Rev. Thomas Bayes (1702-1761) Review of Bayes’ Rule • From the Product Rule: • P(A|B) = P(A &B) / P(B) • P(A &B) = P(A|B) * P(B) = P(B|A) * P(A) • We derive Bayes’ Rule by substitution: • P(A|B) = P(A &B) / P(B) • = P(B|A) * P(A) / P(B)
Real-World Problems May Involve Many Variables http://www.bayesia.com/assets/images/content/produits/blab/tutoriel/en/chapitre-3/image026.jpg
Variables Are Typically Oberserved Simultaneously (Confounded) FeverAcheVirusP No No No .950 No No Yes .002 No Yes No .032 No Yes Yes .002 Yes No No .002 Yes No Yes .001 Yes Yes No .010 Yes Yes Yes .001 So how do we compute P(V=Yes), P(F=Yes & A=No), etc.?
Marginalization P(V=Yes): FeverAcheVirusP No No No .950 No No Yes .002 No Yes No .032 No Yes Yes .002 Yes No No .002 Yes No Yes .001 Yes Yes No .010 Yes Yes Yes .001 ______ Sum = .006
Marginalization P(F=Yes & A=No): FeverAcheVirusP No No No .950 No No Yes .002 No Yes No .032 No Yes Yes .002 Yes No No .002 Yes No Yes .001 Yes Yes No .010 Yes Yes Yes .001 ______ Sum = .003
Combinatorial Explosion (The “Curse of Dimensionality”) Assuming (unrealistically) only two values (Yes/No) per variable: # Variables# of Rows in Table 1 2 2 4 3 8 4 16 5 32 6 64 : : 20 1,048,576
Solution: Local Causality + Belief Propagation
P(B) .001 P(E) .002 B E P(A) T T .95 T F .94 F T .29 F F .001 Recover Joint From Prior & Posterior BEAProb T T T .001*.002*.95 = .000001900 T T F .001*.002*.05 = .000000100 T F T .001*.998*.94 = .000938120 T F F .001*.998*.06 = .000059880 F T T .999*.002*.29 = .000579420 F T F .999*.002*.71 = .001418580 F F T .999*.998*.001 = .000997002 F F F .999*.998*.999 = .996004998
Belief Propagation • Consider just B → A → J • P(J=T | B=T) = P(J=T | A=T) * P(A=T | B=T) • Then use Bayes’ Rule and marginalization to answer more sophisticated queries like • P(B=T | J=F & E=F & M=T)
Multiply-Connected Networks Cloudy Rain Sprinkler Wet Grass
Clustering (“Mega Nodes”) Cloudy Sprinkler Rain Sprinkler Rain Sprinkler Rain Wet Grass
A C G B D E H F Junction Tree Algorithm (Huang & Darwiche 1994)
A A C C G G B B D D E H E H F F Junction Tree Algorithm (Huang & Darwiche 1994) “Moralize””
A C G B D E H F Junction Tree Algorithm (Huang & Darwiche 1994)
A A C C G G B B D D E E H H F F Junction Tree Algorithm (Huang & Darwiche 1994) Triangulate
A C G B D E H F Junction Tree Algorithm (Huang & Darwiche 1994)
ABD ADE ACE CEG AD AE CE A EG DE C G B DEF EGH D E H F Junction Tree Algorithm (Huang & Darwiche 1994)
ABD ADE ACE CEG AD AE CE EG DE DEF EGH “Message-Passing” Observe A=T
ABD ADE ACE CEG AD AE CE EG DE DEF EGH “Message-Passing” Pick a cluster containing A:
ABD ADE ACE CEG AD AE CE EG DE DEF EGH “Message-Passing” Pass messages to propagate evidence: