200 likes | 372 Views
Ch. 4 Relational Algebra (1). Basic concepts. Relational Model. Data models are different in Data representation ( 표현구조 ) Constraints ( 제약조건 ) Operators ( 연산자 ) Operators in the Relational Model Relational Algebra Relational Calculus SQL. Relational Algebra. R(A1, A2, A3)
E N D
Ch. 4Relational Algebra (1) Basic concepts
Relational Model • Data models are different in • Data representation (표현구조) • Constraints (제약조건) • Operators (연산자) • Operators in the Relational Model • Relational Algebra • Relational Calculus • SQL 데이터베이스시스템
Relational Algebra R(A1, A2, A3) Relation value(값) or state(상태) is a time-varying subset of the Cartesian product of all domains. Relation value is a set of tuples 데이터베이스시스템
Operators (1) • Set operators • UNION (합집합) A U B • INTERSECT (교집합) A ∩ B • DIFFERENCE (차집합) A – B • CARTESIAN PRODUCT (곱집합) A x B • Relation operators • SELECT : row (tuple) selection • PROJECT : column (attribute) selection • JOIN : matching the values of common attributes • DIVISION : 데이터베이스시스템
Operators (2) • Cartesian product 데이터베이스시스템
Operators (3) • Relation operators • Join : matching the values of common attributes • DIVISION : values of attributes which include all the tuples of other relation. A [a, b] / B [b] : values of a such that (a, b) exists in A for every value of b in B 학생 [학번, 구독신문] / 신문 [신문] 데이터베이스시스템
Example A : 남학생 (학번, 이름, 학과, 학년) B : 신입생 (학번, 이름, 학과, 학년) C : 과목 (과목이름, 학점수, 개설학과) D : 수강과목 (학번, 과목이름, 학점) E : 학과소속 (대학이름, 학과이름) • A U B • A – B • A ∩ B • A x C 데이터베이스시스템
A : 남학생 (학번, 이름, 학과, 학년) B : 신입생 (학번, 이름, 학과, 학년) C : 과목 (과목이름, 학점수, 개설학과) D : 수강과목 (학번, 과목이름, 학점) E : 학과소속 (대학이름, 학과이름) • E where 대학이름 = ‘경영’ • C [과목이름, 개설학과] • ( (C rename 개설학과 as 학과이름) Join E) [과목이름, 학점수, 학과이름, 대학이름] Relation is closed (닫혔음) under all operators.The result of the operation on relations is a relation Allows nested operation ( (R1 op1 R2) op2 R3) op3 R4 데이터베이스시스템
A : 남학생 (학번, 이름, 학과, 학년) B : 신입생 (학번, 이름, 학과, 학년) C : 과목 (과목이름, 학점수, 개설학과) D : 수강과목 (학번, 과목이름, 학점) E : 학과소속 (대학이름, 학과이름) • ( ( (C rename 개설학과 as 학과이름) Join E) where 대학이름=‘경영’) [과목이름, 학점수] • ( (C rename 개설학과 as 학과이름) Join (E where 대학이름=‘경영) ) [과목이름, 학점수] • ( (C rename 개설학과 as 학과이름) / ( (E where 대학이름=‘경영’)[학과이름]) 데이터베이스시스템
A : 남학생 (학번, 이름, 학과, 학년) B : 신입생 (학번, 이름, 학과, 학년) C : 과목 (과목이름, 학점수, 개설학과) D : 수강과목 (학번, 과목이름, 학점) E : 학과소속 (대학이름, 학과이름) • List subject_name and offering department for all the subjects that freshmen take.( B Join D Join C) [과목이름, 개설학과] ( B[학번] Join D )[과목이름] Join C[과목이름, 개설학과] • Student_numbersand names of 2nd , 3rd, and 4th year male students who got grade(학점) higher than or equal to B (A Join (D where 학점>=‘B’) ) [학번, 이름]– B[학번, 이름] (A – B)[학번, 이름] Join (D where 학점>=‘B’)[학번] 데이터베이스시스템
degree and cardinality (1) R1 (A1, A2, A3), R2 (A1, A2, A3) R3 (A1, B2, B3, B4) • R1 and R2 are union compatible • degree of a relation : number of atttibutes • cardinality of a relation : number of tuples R1 U R2 degree = d(R1) = d(R2)max{c(R1), c(R2)} <= cardinality <= c(R1) + c(R2) R1 - R2degree = d(R1) = d(R2)0 <= cardinality <= c(R1) 데이터베이스시스템
degree and cardinality (2) R1 (A1, A2, A3), R2 (A1, A2, A3), R3 (A1, B2, B3, B4) R1 ∩ R2degree = d(R1) = d(R2)0 <= cardinality <= min {c(R1), c(R2)} R1 X R3degree = d(R1) + d(R3)cardinality = c(R1) x c(R3) R1 Join R3degree = d(R1) + d(R3) - # of common attrs.0 <= cardinality <= max {c(R1), c(R3)} R1 where 조건(SELECT)degree = d(R1) 0 <= cardinality <= c(R1) 데이터베이스시스템
degree and cardinality (3) R1 (A1, A2, A3), R2 (A1, A2, A3), R3 (A1, B2, B3, B4) R1 [A2, A3] (PROJECT)degree = 2 (number of projected attributes)1 (all the values are the same) <= cardinality <= c(R1) R3 / R1[A1] (DIVISION)degree = d(R3) - d(R1[A1]) 0 <=cardinality <= c(R3) / c(R1[A1]) 데이터베이스시스템
Composite operators (1) • Primitive operator Minimal set of operators that cannot be defined by other operators (Union, Difference, Cartesian Product, Select, Project) • Composite operator Operators that can be defined by other primitive operators (Intersect, Join, Division) A ∩ B = A – (A – B) = B – (B – A) A Join B = ( (A X B) where common attributes are matched ) [all but one common attributes] A [a, b] / B [b] = A[a] – ((A[a] X B) – A) [a] 데이터베이스시스템
Composite operators (2) • Theta (Θ) Join cartesian product with a condition Θ • equiJoin theta join where condition Θ is equality (value matching) • Natural Join (자연조인) equiJoin with one common attribute is deleted. 데이터베이스시스템
Operators • Cartesian product • Theta Join 데이터베이스시스템
Composite operators (3) equiJoin Natural Join 데이터베이스시스템
example 데이터베이스시스템
Composite operators (4) A [a, b] / B [b] A[a] – ((A[a] X B) – A) [a] 데이터베이스시스템
Composite operators (5) A[a,b] / B[b] = A[a] – ((A[a] X B[b]) – A)[a] 데이터베이스시스템