510 likes | 719 Views
Chapter 4 Exponential and Logarithmic Functions. General Exponential Function. Definition: If a > 0 and a ≠1 , then the general exponential function with base a is given by f ( x )= a x . Example:. Properties of Exponents. Let a and b be positive numbers. Example.
E N D
General Exponential Function • Definition: If a > 0 and a≠1, then the generalexponential functionwithbase a is given by f(x)=ax. • Example:
Properties of Exponents • Let a and b be positive numbers.
Example • Sketch the graph of the following exponential functions. (a) (b) (c)
general exponential functionf(x)=ax具有下列的特性: 1.domain為(-,)。 2.它的圖形必通過點 (0,1)。 3.若 a>1,則函數為遞增,稱為exponential growth function。 4.若 0 < a<1,則函數為遞減,稱為exponential decay function。 ;若 , 則函數在 上為遞減。
若 a>1,則函數為遞增,稱為exponential growth function。 4.若 0 < a<1,則函數為遞減,稱為exponential decay function。
所謂利息(interest),就是將錢存入銀行,經雙方約定每年按所存金額,即本金(principal),乘以固定的比率,即年利率(annual interest rate),結算而得。即 每年利息 = 本金 × 年利率 • 我們依各期末所衍生的利息是否併入下期之本金去衍生利息,來區分單利法(simple interest)及複利法(compound interest)。
單利 • 所謂單利法,即每期利息之計算,都是以最初儲蓄的本金來計算,而它的利息不併入下期的本金去衍生利息。故 • 設P為本金,年利率為 r,若依單利法以每年分 n期計息,則 t年末的利息 I為
複利 • 所謂複利法,即計算每期末之利息,是以前一期末所得之本利和作為下一期的本金。 • 設P為本金、年利率為 r,若依複利法以每年分 n期計息,則t年末之本利和為
連續複利 • 若令P為本金r為年利率,當時間間距繼續縮短,則一年後本金和會趨近於 令x=r/n 令
Limit Definition of e • The irrational number e is defined to be limit of as . That is , • e 2.71828182846
Example • The graph of exponential functionf(x) = ex.
Exercise 4.1 • 9,12,17
one-to-one function • A function is one-to-one if, for elements a and b in the domain of f,
Inverse function • Let f and g are two one-to-one functions such that f(g(x))=x for each x in the domain of g and g(f(x))=x for each x in the domain of f. • The function g is the inverse function of f. • The function g is denoted by f -1.
Example function inverse function f(x)=2x
Logarithmic Function(對數函數) • If a > 0 and a≠1, the Logarithm of x to the base ais the functiony = logax, is defined as logax = y if and only if ay = x. • Domain oflogax : (0,∞) • TheCommon logarithm (常用對數) is defined as log10x = b if and only if 10b = x.
Properties of logarithms • Product Rule: • Quotient Rule: • Power Rule: • Inverse Properties: • General Properties: • One-to-one Property:
Natural Logarithmic Function • Thenatural logarithm(自然對數) ln xis defined as ln x = logex. • ln x is read as “the natural log of x”. Logarithmic form Exponential form
Properties of Logarithms • ln xy =ln x +ln y
Example • Assume x > 0 and y > 0.
Example • Assume x > 0 and y > 0.
Example • Solve the following equations.
Example • 一筆存款以連續複利計算。如果六年後倍增,則年利率為何。 • Solution: • 連續複利計算的公式為 A = Pert,其中P為原存款總額; A為t年後存款總額;則r表年利率。 • 2P = Per(6) e6r = 2 • lne6r = ln 2 6r= ln 2 • So
Example • 一筆存款以連續複利計算。若年利率為r,則幾年後倍增。 • Solution: • 連續複利計算的公式為 A = Pert,其中P為原存款總額; A為t年後存款總額;則r表年利率。 • 2P = Pert ert = 2 • lnert = ln 2 rt= ln 2 • So
Exercise 4.2 • 19,22,27,32,35,40,41,42,45
Derivatives of Natural Exponential Functions Let u be a differentiable function of x.
Example • Differentiate the following functions.
Example • Find the slope of the tangent line of at the points (0,1) and (1.e). • Solution: • f ’(x)=ex • The slope of the tangent line at the points (0,1) is f ’(0)= e0= 1 • The slope of the tangent line at the points (1,e) is f ’(1)= e1 = e
Example • Differentiate the following functions.
練習 • Differentiate the following functions.
Example • Differentiate the following functions.
Other Bases and Differentiation • Let u be a differentiable function of x.
Exercise 4.3 • 7,10,11,17,20,25,28,30,31,34,35,39
Derivative of the Natural Logarithmic Function Let u be a differentiable function of x. 1. 2.
Example • Find the derivative of f (x) = ln 2x • Solution:
Example • Find the derivatives of the functions.
Example • Find the derivative of • Solution:
Example • Find the derivative of • Solution:
Example • Find the derivative of • Solution:
練習 • Find the derivative of • Solution:
Change of base formula Example:
Other Bases and Differentiation • Let u be a differentiable function of x.
Example • Find the derivative of • Solution:
Exercise 4.4 • 7,11,12,14,19,24,27,30,31,36,38,39,43,48,57