1 / 50

Chapter 4 Exponential and Logarithmic Functions

Chapter 4 Exponential and Logarithmic Functions. General Exponential Function. Definition: If a > 0 and a ≠1 , then the general exponential function with base a is given by f ( x )= a x . Example:. Properties of Exponents. Let a and b be positive numbers. Example.

eagan
Download Presentation

Chapter 4 Exponential and Logarithmic Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 4Exponential and Logarithmic Functions

  2. General Exponential Function • Definition: If a > 0 and a≠1, then the generalexponential functionwithbase a is given by f(x)=ax. • Example:

  3. Properties of Exponents • Let a and b be positive numbers.

  4. Example • Sketch the graph of the following exponential functions. (a) (b) (c)

  5. general exponential functionf(x)=ax具有下列的特性: 1.domain為(-,)。 2.它的圖形必通過點 (0,1)。 3.若 a>1,則函數為遞增,稱為exponential growth function。 4.若 0 < a<1,則函數為遞減,稱為exponential decay function。 ;若 , 則函數在 上為遞減。

  6. 若 a>1,則函數為遞增,稱為exponential growth function。 4.若 0 < a<1,則函數為遞減,稱為exponential decay function。

  7. 所謂利息(interest),就是將錢存入銀行,經雙方約定每年按所存金額,即本金(principal),乘以固定的比率,即年利率(annual interest rate),結算而得。即 每年利息 = 本金 × 年利率 • 我們依各期末所衍生的利息是否併入下期之本金去衍生利息,來區分單利法(simple interest)及複利法(compound interest)。

  8. 單利 • 所謂單利法,即每期利息之計算,都是以最初儲蓄的本金來計算,而它的利息不併入下期的本金去衍生利息。故 • 設P為本金,年利率為 r,若依單利法以每年分 n期計息,則 t年末的利息 I為

  9. 複利 • 所謂複利法,即計算每期末之利息,是以前一期末所得之本利和作為下一期的本金。 • 設P為本金、年利率為 r,若依複利法以每年分 n期計息,則t年末之本利和為

  10. 連續複利 • 若令P為本金r為年利率,當時間間距繼續縮短,則一年後本金和會趨近於 令x=r/n 令

  11. Limit Definition of e • The irrational number e is defined to be limit of as . That is , • e 2.71828182846

  12. Example • The graph of exponential functionf(x) = ex.

  13. Exercise 4.1 • 9,12,17

  14. 4.2 Logarithmic Functions

  15. one-to-one function • A function is one-to-one if, for elements a and b in the domain of f,

  16. Inverse function • Let f and g are two one-to-one functions such that f(g(x))=x for each x in the domain of g and g(f(x))=x for each x in the domain of f. • The function g is the inverse function of f. • The function g is denoted by f -1.

  17. Example function inverse function f(x)=2x

  18. Logarithmic Function(對數函數) • If a > 0 and a≠1, the Logarithm of x to the base ais the functiony = logax, is defined as logax = y if and only if ay = x. • Domain oflogax : (0,∞) • TheCommon logarithm (常用對數) is defined as log10x = b if and only if 10b = x.

  19. Properties of logarithms • Product Rule: • Quotient Rule: • Power Rule: • Inverse Properties: • General Properties: • One-to-one Property:

  20. Natural Logarithmic Function • Thenatural logarithm(自然對數) ln xis defined as ln x = logex. • ln x is read as “the natural log of x”. Logarithmic form Exponential form

  21. Inverse Properties of Logarithms and Exponents. Example:

  22. Properties of Logarithms • ln xy =ln x +ln y

  23. Example • Assume x > 0 and y > 0.

  24. Example • Assume x > 0 and y > 0.

  25. Example • Solve the following equations.

  26. Example • 一筆存款以連續複利計算。如果六年後倍增,則年利率為何。 • Solution: • 連續複利計算的公式為 A = Pert,其中P為原存款總額; A為t年後存款總額;則r表年利率。 • 2P = Per(6) e6r = 2 • lne6r = ln 2  6r= ln 2 • So

  27. Example • 一筆存款以連續複利計算。若年利率為r,則幾年後倍增。 • Solution: • 連續複利計算的公式為 A = Pert,其中P為原存款總額; A為t年後存款總額;則r表年利率。 • 2P = Pert ert = 2 • lnert = ln 2  rt= ln 2 • So

  28. Exercise 4.2 • 19,22,27,32,35,40,41,42,45

  29. 4.3  Derivatives of Exponential Functions

  30. Derivatives of Natural Exponential Functions Let u be a differentiable function of x.

  31. Example • Differentiate the following functions.

  32. Example • Find the slope of the tangent line of at the points (0,1) and (1.e). • Solution: • f ’(x)=ex • The slope of the tangent line at the points (0,1) is f ’(0)= e0= 1 • The slope of the tangent line at the points (1,e) is f ’(1)= e1 = e

  33. Example • Differentiate the following functions.

  34. 練習 • Differentiate the following functions.

  35. Example • Differentiate the following functions.

  36. Other Bases and Differentiation • Let u be a differentiable function of x.

  37. Exercise 4.3 • 7,10,11,17,20,25,28,30,31,34,35,39

  38. 4.4  Derivatives of Logarithmic Functions

  39. Derivative of the Natural Logarithmic Function Let u be a differentiable function of x. 1. 2.

  40. Example • Find the derivative of f (x) = ln 2x • Solution:

  41. Example • Find the derivatives of the functions.

  42. Example • Find the derivative of • Solution:

  43. Example • Find the derivative of • Solution:

  44. Example • Find the derivative of • Solution:

  45. 練習 • Find the derivative of • Solution:

  46. Change of base formula Example:

  47. Other Bases and Differentiation • Let u be a differentiable function of x.

  48. Example • Find the derivative of • Solution:

  49. Exercise 4.4 • 7,11,12,14,19,24,27,30,31,36,38,39,43,48,57

More Related