1 / 21

Applied Electronic Circuit #9

Applied Electronic Circuit #9. Filter, S-plane, Active Filter. 제출일 : 2014. 05. 26. 생체의공학과 2010103789 박 준 환. Passive Filter( 이득이 없는 필터 ). 1. Filter. Active Filter. 필터의 주파수 분석. 1. Filter. <High Pass Filter>. <Low Pass Filter>. <Band Pass Filter>. < Bandstop Filter(notch Filter)>.

eamon
Download Presentation

Applied Electronic Circuit #9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Applied Electronic Circuit #9 Filter, S-plane, Active Filter 제출일 : 2014. 05. 26. 생체의공학과 2010103789 박 준 환

  2. Passive Filter(이득이 없는 필터) 1. Filter • Active Filter

  3. 필터의 주파수 분석 1. Filter <High Pass Filter> <Low Pass Filter> <Band Pass Filter> <Bandstop Filter(notch Filter)> * 신호의 주파수 성분을 알아야 Filtering 가능. 신호와 Noise의 주파수가 다를 때 : Filter 사용 신호와 Noise의 주파수가 같을 때 : Shielding이나 그 외 방법 사용

  4. Filtering의 예시(교재 Fig 3.2에서 발췌) 1. Filter

  5. 실제의 Filter 1. Filter <Low Pass Filter> Transition Band Stop Band Pass Band : Cutoff Frequency

  6. 1. Filter + - + -

  7. “회로” 1. Filter * 전압이득 Filter를 구현하기 위해 반드시 Capacitor나 Inductor가 필요하다. - S가 나와야 하기 때문 * 예시

  8. S-plane(Pole-Zero Diagram) 2. S-plane Pole Zero Right Half Plane(RHP) Left Half Plane(LHP)

  9. 2. S-plane * Case 1. (실근) : Pole이 실근을 가질 경우 Diverge “시스템에서는 존재 X” Die out * BIBO Stability : Bounded Input Bounded Output →

  10. 2. S-plane * Case 2. Pole이 켤레복소수를 가질 경우 , oscillation , Diverge , Die out * : 모든 pole이 LHP에 있음 - Natural Response : Die out ( 시간이 지나면 없어진다 = Transient Response) - Steady State Frequency Response만 따짐

  11. 2. S-plane - 주파수는 같으나 크기와 위상이 변함

  12. First Order Active Filter 3. Active Filter * Low Pass Filter <Bode Plot> * : w가 10증가할 때마다 -20dB만큼 변화함

  13. First Order Active Filter 3. Active Filter * High Pass Filter

  14. First Order Active Filter 3. Active Filter * Band Pass Filter(Capacitor와 pole의 수가 같다)

  15. First Order Active Filter 3. Active Filter * Phase Shifter(All pass filter)

  16. First Order Active Filter 3. Active Filter * Phase Shifter(All pass filter) 이어서 이득 1 : 진폭감쇄가 없다 신호의 Amplitude를 바꾸지 않으면서 위상만을 변화시키고자 할 때 사용

  17. Second Order Active Filter * 의값의 범위에 따라 다른 값의 근이 나온다 3. Active Filter

  18. Second Order Active Filter 3. Active Filter * ζ > 1 (서로 다른 실근 2개) - overdamped : 2개의 pole이 LHP - Natural Response는 2개의 지수함수의 합 * 0 < ζ< 1 (Complex Conjugate) - - Natural Response: Damped Sinusoid * ζ = 0 (Undamped) - Natural Response: Oscillation * ζ< 0 (diverge : unstable) (ζ> 1) (0 < ζ < 1) (ζ < 0) (ζ = 0)

  19. Second Order Active Filter 3. Active Filter * 종합 (ζ = 0) (ζ < 0) (ζ < 1) (ζ = 1) (ζ < 0) (0 < ζ < 1) (ζ = 0)

  20. Second Order Active Filter 3. Active Filter * LPF 1. << 1 , “ ” 2. >> 1 , “” 3. = 1 , “ ” Cutoff frequency에서 값은 Q에 따라 변화 소자의 값에 따라 결정된다(R, C) (1차) (2차) 2차 Filter가 1차 보다 성능은 좋으나 Q값에 따라 파형이 바뀜

  21. 감사합니다.

More Related