130 likes | 254 Views
Internet Engineering Czesław Smutnicki Discrete Mathematics – Residual Arithmetic. CONTENT S. Basic notions Modular arith m etic Congruence Chinese theorem Residual coutning system RNS Signed RNS Conversions. BASIC NOTIONS. Natural/integer numbers
E N D
Internet Engineering Czesław Smutnicki Discrete Mathematics – Residual Arithmetic
CONTENTS • Basic notions • Modular arithmetic • Congruence • Chinese theorem • Residual coutning system RNS • Signed RNS • Conversions
BASIC NOTIONS • Natural/integer numbers • Divisor d|a, a = kd for some integer k • d|a if and only if -d|a • Divisor: 24: 1,2,3,4,6,8,12,24 • Trivial divisors 1 and a • Prime number 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59 • Composite number, 27 (3|27) • For any integer a and any positive integer n there exist unique integers q and r, 0<=r<n so that a = qn + r • Residue r = a mod n • Division q = [a/n], q = a div n • Congruence: a b (mod n) if (a mod n) = (b mod n) • Equivalence class (mod n): [a]n = {a + kn : k Z}
GREATEST COMMON DIVISOR • Common divisor: if d|a and d|b • Relatively prime numbers a and b : gcd(a,b)=1
Thank you for your attention DISCRETE MATHEMATICS Czesław Smutnicki