270 likes | 457 Views
(T>T boiling ). Van der Waals. D. Wetting When It Isn’t Simple ! P.S. Pershan, Harvard Univ. Simple Wetting. D. Three Different Experiments. 1) Casimir Effect: Critical Binary Liquid Fisher and de Gennes (1978), Krech and Dietrich (1991, 1992) Correlation Length: . M. Fukuto,Y. Yana.
E N D
(T>Tboiling) Van der Waals D Wetting When It Isn’t Simple!P.S. Pershan, Harvard Univ. Simple Wetting
D Three Different Experiments • 1) Casimir Effect: Critical Binary Liquid • Fisher and de Gennes (1978), Krech and Dietrich (1991, 1992) • Correlation Length: M. Fukuto,Y. Yana
2) Structured SurfaceC. Rascon and A. O. Parry, Nature 407, 986 (2000). O. Gang, B.Ocko,, K.Alvine, T. Russell,M. Fukuto, C. Black
Dry Monolayer Adsorption (Wetting Liquid) 3) Reconstructing Surface D. Pontoni, K. Alvine, A. Checco, O. Gang, B. Ockio, F. Stellacci Nanoparticles & Controlled Solvation Thiol Stabilized Au Particles(~ 2 to 8 nm)
Outer cell: 0.03C Inner cell: 0.001C Wetting film on Si(100) at T = Trsv+DTm. Saturated vapor Bulk liquid reservoir: atT = Trsv. Control of Film Thickness Vapor Pressure Thickness Delicate Control: P ~ T Van der Waals
Comparisons • Via gravity • For h < 100 mm, • Dm < 10-5J/cm3 • L > ~500 Å • small Dm, large L • Via temperature offset L (2Weff /Dm)1/3 (DTm)-1/3 Thickness L [Å] • Via pressure under-saturation • For DP/Psat > 1%, • Dm > 0.2 J/cm3 • L < 20 Å • large Dm, small L DTm [K] Dm [J/cm3] Example of 1/3 Power Law Methyl cyclohexane (MC) on Si at 46 °C
47.7 °C MC rich PFMC rich Temperature [C] 46.2 °C 45.6 °C x (PFMC mole fraction) Critical Casimir Effect in NanoThick Liquids: Binary Liquid Fisher and de Gennes (1978), Krech and Dietrich (1991, 1992) Methylcyclohexane (MC) Perfluoro- methylcyclohexane (PFMC) [Heady & Cahn, J. Chem. Phys. 58, 896 (1973)] Tc = 46.13 0.01 °C, xc = 0.361 0.002
Experimental Paths T=(T-Tc)/Tc wetting film on Si(100) T = Trsv+DTm. Liquid Phase Vapor Phase Outer cell: 0.03C Inner cell: 0.001C Film-TRes 2 Phase Coexistence Bulk MC + PFMC reservoir: (x ~ xc = 0.36) atT = Trsv. Thermodynamics Same Experiment: Thickness of Absorbed Film Critical Point
x = 0.36 ~ xc D vs........ T-Tc R/RF DTm 0.020 K Tc = 46.2 °C Film thickness L [Å] qz [Å-1] 0.10 K 0.50 K Tfilm [°C] X-ray reflectivity & Film thickness D Paths
d = 2 Ising (exact) [R. Evans & J. Stecki, PRB 1994] d = 4 Ising (mean field) [M. Krech, PRE 1997] Excess free energy/area of a wetting film: Casimir term “Force” or “pressure” balance: (+,-) (+,-) +,(y) / +,-(0) +,(y) (+, +) (+, +) y = (L/x+)1/n = t (L/x0+)1/n y = (L/x+)1/n = t (L/x0+)1/n Theory
d = 4 (MFT) Q+,-(y) Q+,-(0) DTm 0.020 K 0.10 K d = 2 (exact) y = (L/x+)1/n = t (L/x0+)1/n Experiment vs. Theory There is prediction for for 3D. Theory for y-dependence in d=3 does not exist!
Universal “Casimir amplitudes” • At bulk Tc (t = 0), scaling functions reduce to: D q(0) = Q(0)/(d – 1) For recent experiments with superfluid He (XY systems), see: R. Garcia & M.H.W. Chan, PRL 1999, 2002; T. Ueno et al., PRL 2003
∞ Adsorbed Liquid Long Channels Variety of Shapes ( Adsorption vs..... Shape: Phase Diagram 1/ Sculpted Surfaces Theory:Rascon & Parry, Nature (2000) Crossover Geometry to Planar Planar Geometry Dominated
Self Alignment on Si PMMA removal by UV degradation & Chemical Rinse Reactive Ion Etching C. Black (IBM) Parabolic Pits: Tom Russell (UMA) Diblock Copolymer in Solvent ~40 nm Spacing ~20 nm Depth/Diameter
Diffraction Pattern of Dry PitsHexagonal Packing Cross over to other filling! Thickness D~ X-ray Grazing Incidence Diffraction (GID)]In-plane surface structure Liquid Fills Pore: Scattering Decreases:
Filling GID Reflectivity Electron Density vs..... T Filling X-ray Measurement of Filling
R-P Predictionc~3.4 Uncertainties? Results for Sculpted Surface Sculpted is Thinner than Flat Flat Sample c
Volume of Liquid Filling Pores: p Volume of Liquid above Pores: t Film only coats Flat Part Area_Flat/Area Total: Tasinkevych & Dietrich
Controlled Wetting:Dry Monolayer Adsorption Formation LangmuirIsotherms Reconstructing Surface:Gold Nanoparticles & Controlled Solvation Stellacci et al (MIT) OT: MPA (2:1)OT=CH3(CH2)7SHMPA=HOOC(CH2)2SH Liftoff Area Of Monolayer Bimodal Size Distribution of Particles
Adsorption GID Qz Qxy Qxy Qxy GID: X-ray vs. Liquid Adsorption(small particles) Return to Dry
Three FeaturesThat Can Be Understood! 1-Minimum at low qz 2-Principal Peak Reduces and Shifts Solid lines are just guides for the eye! 3-2nd Minima Moves to Lower qz Temperature Dependence of Reflectivity:
Construction of Model: Dry Sample Model Fit: Based on Particle Size Distribution Vertical electron density profile Core size distribution
3-Second Minima Moves to Lower qz 2-Principal Peak Reduces and Shifts 1-Minimum at low qz Fits of Physical Model
Thick wetting film regime Beginning of bilayer transition Thin wetting film regime Evolution of Model with Adsorption
Summary of Nano-particle experiments Bimodal Au nanocrystals in equilibrium with undersaturated vapor Poor vs..... Good Solvent Good Solvent Aggregation in Poor Solvent Reversible Dissolution in Good Solvent Self Assembly
Summary • Delicate Control of Wetting: • Wetting of Critical Liquid (Casimir) M. Fukuto,Y. Yana • Wetting of Structured Surface (Rascon/Parry & Tasikevych/Dietrich)O. Gang, B.Ocko,, K.Alvine, T. Russell,M. Fukuto, C. Black • Nano-Particles: Self AssemblyD. Pontoni, K. Alvine, A. Checco, O. Gang, B. Ockio, F. Stellacci