110 likes | 122 Views
Explore different types of angles including complementary angles, supplementary angles, adjacent angles, straight angles, opposite rays, intersecting lines, and vertical angles. Understand their properties and relationships.
E N D
Angles that have a sum of 90° Angles that have a sum of 180° Angles that share a side. Two adjacent angles whose non-common sides form a line. Angles whose sides form two pairs of opposite rays.
52° 38° ∠ABD ∠BDC complementary 52° 128° ∠ABD ∠BDE supplementary ∠CDB ∠EDB adjacent
90° 57° 33° 90° m∠2 180° 41° 180° 41° 139°
Complementary: ∠DEF & ∠B Supplementary: ∠FEG & ∠B Adjacent: ∠DEF & ∠FEG m∠1 + m∠2 = 90° m∠2 = 90° - m∠1 m∠2 = 90° - 73° m∠2 = 17° m∠3 + m∠4 = 180° m∠3 = 180° - m∠4 m∠3 = 180° - 37° m∠3 = 143°
180° 180° 3x + 8 4x - 3 180° 7x + 5 180° 7x 175° x 25 25 3x + 8 3(25) + 8 83° 4x - 3 4(25) - 3 97° 83° 97°
m∠BCA + m∠DCA = 180° 5x + 1 + 6x + 3 = 180° 11x + 4 = 180° 11x = 176° x = 16 m∠DCA = 6x + 3 m∠BCA = 5x + 1 m∠DCA = 6(16) + 3 m∠BCA = 5(16) + 1 m∠DCA = 99° m∠BCA = 81°
intersecting lines adjacent ∠1 ∠3 opposite rays ∠1 ∠2 ∠2 ∠3
Linear Pairs: None Vertical Angles: ∠1 & ∠4, ∠2 & ∠5, ∠3 & ∠6
4x° 4x° supplementary x° 4x° 180° 5x° 180° x 36° 5 36° 4(36) 144°
m∠1 = x° and m∠2 = 3x° m∠1 + m∠2 = 180° x + 3x = 180° 4x = 180° x = 45 m∠2 = 3x° m∠1 = x° m∠ = 45° m∠2 = 3(45) m∠2 = 135°
coplanar collinear intersect adjacent straight angle interior