440 likes | 453 Views
Challenges for the future sustainable energy generation, distribution and use. B. Fillon CEA LITEN Grenoble. December 2010, Boston. Content. Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion
E N D
Challenges for the future sustainable energy generation, distribution and use. B. Fillon CEA LITEN Grenoble December 2010, Boston
Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
One BU of Technological Research Division R & Dfor nuclear energy Defense programs Fundamental Research Technological Research for industry 15.000 researchers 3 Billions Euros annual AREVA industrial group Getting ready for the New Economy
LITEN : New energy technologies Electric Transports Electric Power Batteries Fuel Cells Hybridation Recycling Solar Energy & Buildings Nanomaterials Organic Electronic Energy recovery Nano Surfaces µ-power sources Solar Energy Solar PV, CSP,CPV Electrical systems Energetic efficiency Biomass & Hydrogen Solid Storage H2 Production H2 Storage Usages 30% 30% 20% 20%
LITEN: Key numbers Chambéry Solaire & Bâtiments à faible consommation d’énergie 200 p. Grenoble Transport électrique & nanomatériaux 550 P. Effectif 2010 750 Ingénieurs & Techniciens Brevets 350 actifs 135 dépôts en 2009 • Budget 2010 • 120 M€ • 90 M€ de recettes externes • 30 M€ de subvention CEA
Industrial partnerships Large companies SME Building/Solar Energy • Photovoltaic devices • Thermal devices • Positive energy building Transport • Fuel cell • Energy storage • Hydrogen Nomad • Micro power sources • Energy scavenging • Organic Electronic
Critical materials substitution in alignment with LITEN strategy Storage Harvesting eg: Li material for batteries eg: CIGS for solar cells Critical materials Conversion eg: Pt for fuel cells
Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
Road-Map of motorization technologies Thermal Motorisation Fuel Cell Motorisation Hybride Motorisation Hybride Motorisation 2010 2010-15 2015-20 2020-2030 • Synthetic fuel – gen 2, • Exhaust system, • Air treatment, • Thermal exchange system. -Energy storage, -Energy management. -Hydrogen storage and production, -Coupling with Renewable energy, -High energy batteries
Less catalyst and well disperse: Nanosized (dia.= 20 nm) Nanoscattered (Pt =20 nm) Nanotextured surfaces for catalysis
Material and cost for the cathode component Cost per kg 1°/Cobalt, 2°/Nickel 3°/Lithium 4°/Manganèse 5°/Aluminium 6°/Fer 25% of cobalt is used for phone market in 2010
Lithium-ion battery family : multiple contents Lithium Oxydes : Cathode Anode Cobalt (LiCoO2) Manganese(LiMn2O4) Phosphate (LiFePO4) NCA(LiNiCoAlO2) NMC(LiNiMnCoO2) … Graphite Hard Carbone Titanate Li + Li-ion picture: courtesy of Prof. M. Winter + New materialdevelopment !! • Cathode : Avoid cobalt for cost/security • Anode : Replace graphite by Ti oxydes for cost/security Think recycling
Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
Electricity production Monopolar plate H2input Air / O2input Oxygen Reduction Reaction (cathode): O2 + 4e- + 4H+ 2H2O Hydrogen Oxidation Reaction (anode) H2 2H+ + 2e- Excess H2output Excess Air/O2 output Electrodes (carbon support + catalyst + protonic polymer conductor) Polymer membrane Heat Heat Membrane-Electrodes Assemblies for PEMFC Strength of the CEA: it masters the whole chain, from components to systems, through assemblies and stacks
LITEN PEMFC for transport Bipolar plates GENEPAC80 kW Metallic stack • Development of new materialsand substitution of critical material • Optimization of materials and membrane electrode assembly • Design, manufacture and tests of stacks • Membrane degradation mechanisms analysis • Development of electrochemical constitutive equations coupled with thermohydraulic analysis SPACT 80 30 kW Composite stack Marathon Shell 200 W Graphite stack GENEPAC 20 kW Metallic stack RobotPAC 200 W Graphite stack EPICEA 2 kW Composite stack
PEMFC: Increase the contact surface Active layer ? • Catalyst = Pt (1720 US$/oz = 45€/g ; 100kW 30g 1347€ )
Three potential approaches to substitute Pt MEA engineering Deposition of catalyst at the most interesting place Nano-achitectures of catalyst layers Catalysts Synthesis Substitute noble metal by a transition metal
1) Minimize Pt quantity PEMFC : development on MEA with less Pt Genepac 80KW Same performances with a third of platinum quantity
1) Minimize Pt quantity MEA engineering Deposition of catalyst at the most interesting place • Optimized dispersion of catalyst in the MEA : • inlet / outlet • channel / Ribs • composition of ink (hydrophilic/ hydrophobic) Optimize the distribution of catalysts on MEA for each design of bipolar plate and application
2) Improve the active layer structure Figure : Pt dendritic structures, K. Yamada et al. J. Power Sources 180 (2008)181-184 Figure : tetrahexahedrals Pt nanoparticules ,N.Tian, Science Vol.316 may (2007) 732-735 Nano-achitectures of catalyst layers Pt nanowire, nanotubes and nanoflowers on carbon support, CEA, (F) Dr. Michael Brett / GLancing Angle Deposition iCORE, NRC (Can) Pt nanowire, on carbon support, Dodelet and Sun (Can)
3) Propose new materials Catalysts synthesis Substitute noble metal by a transition metal Multimetallics Non noble and / bio-mimetic catalysts Core-Shell / hollow spheres J-P. Dodelet INRS (Can) P. Zelenay, LANL (USA) V. Artero, CEA/IRTSV (F) P. Gouérec, Sté GPMaterials (F) B. Popov, Univ. South carolina (USA) P. Zelenay, LANL (USA) M.K Debe, 3M (USA) R. Adzick, BNL (USA) M.K Debe, 3M (USA) P. Strasser, ORNL (USA)
Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
Photovoltaic cell : road map 2015/20 2008 2 €/Wp 5 €/Wp 1 €/Wp 2 €/Wp 0,8 €/Wp 0,2 €/Wp Innovation technologique (Savoie Technolac - INES) System 2,4 €/Wp Sites industriels de grande capacité (Bourgoin Jallieu) Module 0,6 €/Wp Cell Wafer Lingot Silicon
Three main categories for solar cells New concepts 3rdgénération cells Thin film technologies a-Si/mc-Si, CIGS (CuInSe, CdTe) Crystalline Si cells
Material PV wastes upcoming (<> tech.) Potential material sourcing risks (rare materials) PV Recycling : volume and value recycling m-Si Ag Crystal p-Si Silicon a-Si / µ-cryst. In Thin Film Crystal. Multi-junctionIII-V / concen. Ga, Ge, In, Au Semi-conductorcompounds In, Ga CIS / CIGS Thin Filmpolycrystal. Te, Cd toxicity CdTe SolidElectrolyte PVTech. In, Pt, Ru Dye –cells LiquidElectrolyte … Organic… … New concepts… …
Three main categories for solar cells New concepts 3rdgénération cells Thin film technologies a-Si/mc-Si, CIGS (CuInSe, CdTe) Crystalline Si cells
Radial junction silicon nanowire technology • High efficiency (>15%) • Enhanced optical absorption of silicon nanowire arrays • Effective extraction of photogenerated charges in the radial junction configuration • Low cost • Low silicon material usage • Metal substrate
Advantage of Si nanowires: enhanced optical absorption 5000 nm (diameter = periodicity / 2) Si nanowire arrays with optimized periodicity offer an enhanced optical absorption compared to Si thin films with same thickness Si nanowire arrays would allow to reach a higher ultimate efficiency, while reducing Si material usage J. Li et al., Appl. Phys. Lett. 95, 243113 (2009).
State of the art of radial junction Si nanowire technology • The advantage of CVD over etching is the ability to directly prepare silicon nanowire arrays on large-area, low-cost substrates (as demonstrated by General Electric) • Promising results have been obtained experimentally by CVD (CalTech has demonstrated very recently efficiencies up to 7.9% with an active volume of Si equivalent to a 4 µm thick Si wafer).
Three main categories for solar cells New concepts 3rdgénération cells Thin film technologies a-Si/mc-Si, CIGS (CuInSe, CdTe) Crystalline Si cells
Potential of CIGS technology Largest potential for improvement among thin film technologies 2nd generation (thin films) 1st generation (bulk silicon) Veeco, Photon’s PV Production Equipment Conf. (2009)
State of the art of CIGS technology ZnO:Al (0.5 µm) by sputtering Intrinsic ZnO (0.05 µm) by sputtering Transparent conductive oxide CdS or ZnS or In2S3 (0.05 µm) in chemical bath Cu(In,Ga)Se2 (1-2 µm) Buffer layer (n type) Mo (0.2 µm) by sputtering Absorber layer (p type) Back contact Glass, metal, polymer Substrate 25th European Photovoltaic Solar Energy Conference (2010)
State of the art of CZTS technology Indium supply issue • Forecast: supply of « virgin » In can be increased up to 1000 tons/year at prices consistent with photovoltaic use (<1600 $/kg). • Demand of In for CIGS module fabrication < 0.1 g/Wp • In is abundant enough for 10 GWp/year of production capacity M. A. Green, Prog. Photovolt. Res. Appl. 17, 347 (2009). G. Phipps et al., Renewable Energy Focus, July/August 2008, 56-59. Cu(In,Ga)(S,Se)2 (CIGS) Cu2(Zn,Sn)(S,Se)4 (CZTS) 1 H. Katagiri et al., Applied Physics Express 1, 041204 (2008) 2 T. K. Todorov et al., 25th European Photovoltaic Solar Energy Conference (2010)
Content Introduce CEA/LITEN Critical Material substitutes for energy transport applications Energy storage Energy conversion Critical Material substitutes for solar energy Bulk silicon Thin film PV cells Conclusion
The Hype Cycle: Five stages Hyper-entusiasm Indium Demand and price Gallium Productivity plateau Selenium Mass production Lithium Market saturation Rare earth New product “take off” R&D From revolution to evolution
Conclusion 1) Three examples of potential crisis at short, medium and long term for sustainable energy components. • Lithium for batteries • Indium, Tellurium,.. for photovoltaics • Pt for fuel cell 2) Three potential approaches to avoid the crisis • Decrease the amount of material in the component • Develop new architectures • Replacement with non noble or non rare earth materials 3) Think « Life Cycle » • Integrate recycling considerations in R&D for new technologies
A bientôt Thankyou Thank you for your attention Bertrand FILLON Tel:0033685324833 bertrand.fillon@cea.fr
Transport : Exhaust gas CO2 H2O N2 O2 DECADE Pt ou Pd for CO et CxHy oxydation Rhfor NOx reduction CxHy CO NOx Today technology TWC Washcoat Al2O3 (20-60 µm) + catalyst (Pt(Pd)/Rh) par imprégnation (1-2% wt)
LCA studies & evaluation Design /Dimens. Evaluation Demonstration • Technical & economical evaluations • Life cycle analysis (LCA) • Optimisation of energy processSupport to technology development : targeting prioritary R&D Ecoinvent
PEMFC: Increase the contact surface Active layer ? • Catalyst = Pt (1720 US$/oz = 45€/g ; 100kW 30g 1347€ ) • Minimize the Pt quantity • Improve the active layer structure • Propose new materials
3) Propose new materials Non noble metal • Bottlenecks : Turn over frequency ! (more reactions) f (s-1)= i / (eN) i – current (A.cm-2), e – electron charge(1.6 10-19 C) N – Active site density (cm-2) • recent progress : Iron based catalyst similar of Pt nanoparticules Gasteiger et al. Science 324, 48 (2009)
3) Propose new materials • Specific properties obtain with some architecture of transition metal oxide. Los Alamos Nat Lab. (2010) Lefèvre et al, Science, 324, 71 (2009) Durability?