1 / 64

Dense Atomic Ensembles and Collisional Narrowing for Quantum Memories

Explore the efficiency of quantum memories and the strong nonlinearity per photon in dense atomic ensembles. Learn about the unique model system and experimental setups, as well as collisional narrowing, motional broadening, and dynamical decoupling. Discover the measurement techniques and applications of this research.

ecarla
Download Presentation

Dense Atomic Ensembles and Collisional Narrowing for Quantum Memories

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Long coherence times with dense trapped atomscollisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook (Kurizki group, Michael Aizenman) Weizmann Institute of Science, Israel

  2. Why dense atomic ensembles? • Efficiency of quantum memories depends on optical depth • Strong nonlinearity per photon • Collective coupling to SC circuits • Unique model system!

  3. Quantum memories 2010 - : Us, Kuzmich, Porto, Rosenbusch, Bloch ….

  4. Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling

  5. Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling

  6. Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling

  7. Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling

  8. Outline • Collisional narrowing • Spectrum with discrete fluctuations • Motional broadening • Dynamical decoupling • Bath spectral characterization

  9. Motional narrowing “ ”

  10. Collisional narrowing Exponent Gaussian

  11. Experimental results Collisional narrowed decay time Inhomogeneous decay time Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

  12. Experimental results Data collapse! Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

  13. Mott insulator suppresses collisions • Mott-Insulator with exactly one atom per site • ~80 Hz EIT lines • ~250 msec storage time for light U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, PRL 2010

  14. Discrete Vs continuous fluctuations • Kubo-Anderson model Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)

  15. Discrete Vs continuous fluctuations • Kubo-Anderson model • Cold collisions in atomic ensembles Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)

  16. Discrete fluctuations • Telegraph noise in semiconductors • Single molecule spectroscopy

  17. Solution of the discrete model Without collisions: With collisions: A. Brissaud and U. Frisch, J. Math. Phys. 15, 524 (1974).

  18. Atoms in 3D harmonic trap Density of states for 3D harmonic trap Boltzmann factor

  19. How do we measure the parameters? • t1 is measured in low density with

  20. G is measured by inducing oscillations in the waist of the atomic cloud and observing their decay:

  21. Comparing theory to experiment Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)

  22. Comparison to Kubo’s model Bloembergen et al, PRA 1984

  23. Can fluctuations broaden the spectrum ? Example: Student’s t-distribution Motional narrowing A. Burnstein, Chem. Phys. Lett. 83, 335 (1981).

  24. Can fluctuations broaden the spectrum ? Example: Student’s t-distribution Motional narrowing Motional broadening A. Burnstein, Chem. Phys. Lett. 83, 335 (1981).

  25. Can fluctuations broaden the spectrum ? Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

  26. Mathematical proof for stable distributions where α - characteristic exponent of a stable distribution Gaussian: α=2, Cauchy: α=1, Levi: α=1/2 Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

  27. Motional broadening: exponential decay Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

  28. Effect of cutoff Motional broadening persists until cutoff is sampled

  29. Relation to Zeno and anti Zeno Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)

  30. Suppression of collisionaldecoherence by dynamical decoupling

  31. Echo fails at high densities

  32. Dynamical Decoupling Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

  33. Process tomography of DD Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)

  34. Process tomography of non-linear Hamiltonian“twist” of the Bloch sphere Rubidium 87: a11+a22-2*a12 = 0.3% of a11 and a22

  35. Measuring the bath spectrum Continuous Rabi pulse W The decay rate is S(w) F(w,t) G. Gordon et. al., J. Phys. B: At. Mol. Opt. Phys. 42, 223001 (2009) w

  36. Measured collisional bath spectrum Lorentzian Trap oscillation frequency I. Almog et. al., submitted (2011)

  37. Measured decay vs predictions from bath spectrum I. Almog et. al., submitted (2011)

  38. Anomalous diffusion of atoms in a 1D dissipative lattice

  39. Motional broadening in real space Q=1.0 Q=1.57

  40. Measurements of 1D anomalous diffusion Ballistic Diffusion

  41. Self similarity

  42. Summary Collisional narrowing PRL 105 093001 (2010) Discrete fluctuations PRL 104, 253003 (2010) Dynamical decoupling PRL 105 053201 (2010) Collisional broadening PRA, in press (2011) Bath characterization submitted (2011) Anomalous diffusion in preparation (2011)

  43. Outline • Collisional narrowing Y. Sagi, I. Almog and ND, PRL 105 093001 (2010) • Spectrum with discrete fluctuations Y. Sagi, I. Almog, R. Pugatch and ND, PRL 104, 253003 (2010) • Motional broadening Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and ND, submitted (2010) • Dynamical decoupling Y.Sagi, I. Almog and ND, PRL 105 053201 (2010) • Bath spectral charecterization I. Almog et. al., submitted (2011)

  44. How to create a Power-law velocity distribution? • Don’t be in thermal equilibrium ! • Sisyphus cooling scheme: Y. Castin, J. Dalibrad, C. Cohen-Tannoudji (1990)

  45. Measurements of 1D anomalous diffusion Ballistic Diffusion

  46. Measurements of 1D anomalous diffusion It is possible to measure both the spatial atomic distribution and the velocity distribution (by a time of flight method).

  47. Direct observation of anomalous diffusion

  48. 1D anomalous diffusion Ballistic Normal diffusion

More Related