640 likes | 655 Views
Explore the efficiency of quantum memories and the strong nonlinearity per photon in dense atomic ensembles. Learn about the unique model system and experimental setups, as well as collisional narrowing, motional broadening, and dynamical decoupling. Discover the measurement techniques and applications of this research.
E N D
Long coherence times with dense trapped atomscollisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook (Kurizki group, Michael Aizenman) Weizmann Institute of Science, Israel
Why dense atomic ensembles? • Efficiency of quantum memories depends on optical depth • Strong nonlinearity per photon • Collective coupling to SC circuits • Unique model system!
Quantum memories 2010 - : Us, Kuzmich, Porto, Rosenbusch, Bloch ….
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Outline • Collisional narrowing • Spectrum with discrete fluctuations • Motional broadening • Dynamical decoupling • Bath spectral characterization
Collisional narrowing Exponent Gaussian
Experimental results Collisional narrowed decay time Inhomogeneous decay time Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)
Experimental results Data collapse! Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)
Mott insulator suppresses collisions • Mott-Insulator with exactly one atom per site • ~80 Hz EIT lines • ~250 msec storage time for light U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, PRL 2010
Discrete Vs continuous fluctuations • Kubo-Anderson model Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)
Discrete Vs continuous fluctuations • Kubo-Anderson model • Cold collisions in atomic ensembles Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)
Discrete fluctuations • Telegraph noise in semiconductors • Single molecule spectroscopy
Solution of the discrete model Without collisions: With collisions: A. Brissaud and U. Frisch, J. Math. Phys. 15, 524 (1974).
Atoms in 3D harmonic trap Density of states for 3D harmonic trap Boltzmann factor
How do we measure the parameters? • t1 is measured in low density with
G is measured by inducing oscillations in the waist of the atomic cloud and observing their decay:
Comparing theory to experiment Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)
Comparison to Kubo’s model Bloembergen et al, PRA 1984
Can fluctuations broaden the spectrum ? Example: Student’s t-distribution Motional narrowing A. Burnstein, Chem. Phys. Lett. 83, 335 (1981).
Can fluctuations broaden the spectrum ? Example: Student’s t-distribution Motional narrowing Motional broadening A. Burnstein, Chem. Phys. Lett. 83, 335 (1981).
Can fluctuations broaden the spectrum ? Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Mathematical proof for stable distributions where α - characteristic exponent of a stable distribution Gaussian: α=2, Cauchy: α=1, Levi: α=1/2 Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Motional broadening: exponential decay Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Effect of cutoff Motional broadening persists until cutoff is sampled
Relation to Zeno and anti Zeno Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Suppression of collisionaldecoherence by dynamical decoupling
Dynamical Decoupling Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)
Process tomography of DD Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)
Process tomography of non-linear Hamiltonian“twist” of the Bloch sphere Rubidium 87: a11+a22-2*a12 = 0.3% of a11 and a22
Measuring the bath spectrum Continuous Rabi pulse W The decay rate is S(w) F(w,t) G. Gordon et. al., J. Phys. B: At. Mol. Opt. Phys. 42, 223001 (2009) w
Measured collisional bath spectrum Lorentzian Trap oscillation frequency I. Almog et. al., submitted (2011)
Measured decay vs predictions from bath spectrum I. Almog et. al., submitted (2011)
Motional broadening in real space Q=1.0 Q=1.57
Measurements of 1D anomalous diffusion Ballistic Diffusion
Summary Collisional narrowing PRL 105 093001 (2010) Discrete fluctuations PRL 104, 253003 (2010) Dynamical decoupling PRL 105 053201 (2010) Collisional broadening PRA, in press (2011) Bath characterization submitted (2011) Anomalous diffusion in preparation (2011)
Outline • Collisional narrowing Y. Sagi, I. Almog and ND, PRL 105 093001 (2010) • Spectrum with discrete fluctuations Y. Sagi, I. Almog, R. Pugatch and ND, PRL 104, 253003 (2010) • Motional broadening Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and ND, submitted (2010) • Dynamical decoupling Y.Sagi, I. Almog and ND, PRL 105 053201 (2010) • Bath spectral charecterization I. Almog et. al., submitted (2011)
How to create a Power-law velocity distribution? • Don’t be in thermal equilibrium ! • Sisyphus cooling scheme: Y. Castin, J. Dalibrad, C. Cohen-Tannoudji (1990)
Measurements of 1D anomalous diffusion Ballistic Diffusion
Measurements of 1D anomalous diffusion It is possible to measure both the spatial atomic distribution and the velocity distribution (by a time of flight method).
1D anomalous diffusion Ballistic Normal diffusion