1 / 16

Mikhail M. Stolnitz Saratov State University, Saratov, Russia

This compilation presents important data on glycerol and its aqueous solutions as an optical clearing agent for biotissues. It covers its mechanical, thermodynamical, electrical, and optical properties.

echerry
Download Presentation

Mikhail M. Stolnitz Saratov State University, Saratov, Russia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Saratov State University Optics & Biomedical Physics Department GLYCEROL AS OPTICAL CLEARING AGENT FOR BIOTISSUES:TERMS, PROPERTIES,CONSTANTS AND FORMULAS.QUICK REFERENCE Mikhail M. Stolnitz Saratov State University, Saratov, Russia

  2. Saratov Fall Meeting 2015

  3. Itroduction “Our aim in this compilation is to present the more important of the available data on glycerine and its aqueous solutions for ready reference.” [1] Saratov Fall Meeting 2014

  4. Nomenclature Glycerol is a simple polyol (sugar alcohol) compound. It is a colorless, odorless, viscous liquid that is widely used in pharmaceutical formulations. Glycerol has three hydroxyl groups that are responsible for its solubility in water and its hygroscopic nature [2]. IUPAC name: propane-1,2,3-triol Other names: glycerin, glycerine, propanetriol, 1,2,3-trihydroxypropane Glycerine (sometimes glycerin) is the term most often applied to the commercial product, which usually contains a small percentage of water. Glycerol (chemically, also 1,2,3-propanetriol) refers to the chemical compound and content in a formulation. specifically to the trihydric alcohol C3H5(OH)3. Structure of glycerol, skeletal formula Saratov Fall Meeting 2015

  5. Mechanical properties Saratov Fall Meeting 2015

  6. Thermodynamical Properties Saratov Fall Meeting 2015

  7. Electrical Properties Saratov Fall Meeting 2015

  8. Optical Properties Saratov Fall Meeting 2015

  9. References Physical Properties of Glycerine and Its Solutions. ‒ New York: Glycerine Producers' Association, 1963. ‒ 27 с. From Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Glycerol Adamenko I. I., Zelinsky S. O., Korolovich V. V. Thermodynamic Properties of Glycerol-Water Solution // Ukrainian Journal of Physics. ‒ 2007. ‒ T. 52, № 9. ‒ C. 855-859. Akinkunmi F. O., Jahn D. A., Giovambattista N. Effects of Temperature on the Thermodynamic and Dynamical Properties of Glycerol-Water Mixtures: A Computer Simulation Study of Three Different Force Fields // Journal of Physical Chemistry B. ‒ 2015. ‒ T. 119, № 20. ‒ C. 6250-6261. Alkindi A. S., Al-Wahaibi Y. M., Muggeridge A. H. Physical Properties (Density, Excess Molar Volume, Viscosity, Surface Tension, and Refractive Index) of Ethanol plus Glycerol // Journal of Chemical and Engineering Data. ‒ 2008. ‒ T. 53, № 12. ‒ C. 2793-2796. Angulo-Sherman A., Mercado-Uribe H. Ionic transport in glycerol-water mixtures // Ionics. ‒ 2015. ‒ T. 21, № 3. ‒ C. 743-748. Bastiansen O. Intra-Molecular Hydrogen Bonds in Ethylene Glycol, Glycerol, and Ethylene Chlorohydrin // ActaChemicaScandinavica. ‒ 1949. ‒ T. 3, № 4. ‒ C. 415-421. Behrends R., Fuchs K., Kaatze U., Hayashi Y., Feldman Y. Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50 degrees C // Journal of Chemical Physics. ‒ 2006. ‒ T. 124, № 14. ‒ C. 8. Beigzadeh R., Rahimi M., Shabanian S. R. Developing a feed forward neural network multilayer model for prediction of binary diffusion coefficient in liquids // Fluid Phase Equilibria. ‒ 2012. ‒ T. 331. ‒ C. 48-57. Bhaganna P., Volkers R. J. M., Bell A. N. W., Kluge K., Timson D. J., McGrath J. W., Ruijssenaars H. J., Hallsworth J. E. Hydrophobic substances induce water stress in microbial cells // Microbial Biotechnology. ‒ 2010. ‒ T. 3, № 6. ‒ C. 701-716. Boral S., Bohidar H. B. Effect of Water Structure on Gelation of Agar in Glycerol Solutions and Phase Diagram of Agar Organogels // Journal of Physical Chemistry B. ‒ 2012. ‒ T. 116, № 24. ‒ C. 7113-7121. Brisson D., Vohl M. C., St-Pierre J., Hudson T. J., Gaudet D. Glycerol: a neglected variable in metabolic processes? // Bioessays. ‒ 2001. ‒ T. 23, № 6. ‒ C. 534-542. Brochier B., Marczak L. D. F., Norena C. P. Z. Osmotic Dehydration of Yacon Using Glycerol and Sorbitol as Solutes: Water Effective Diffusivity Evaluation // Food and Bioprocess Technology. ‒ 2015. ‒ T. 8, № 3. ‒ C. 623-636. Callendar H. L. On Vapour-Pressure and Osmotic Pressure of Strong Solutions // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. ‒ 1908. ‒ T. 80, № 541. ‒ C. 466-500. Castello M. L., Dweck J., Aranda D. A. G. Thermal stability and water content determination of glycerol by thermogravimetry // Journal of Thermal Analysis and Calorimetry. ‒ 2009. ‒ T. 97, № 2. ‒ C. 627-630. Chattoraj S., Chowdhury R., Ghosh S., Bhattacharyya K. Heterogeneity in binary mixtures of dimethyl sulfoxide and glycerol: Fluorescence correlation spectroscopy // Journal of Chemical Physics. ‒ 2013. ‒ T. 138, № 21. ‒ C. 214507-1-214507-8. Chelli R., Gervasio F. L., Gellini C., Procacci P., Cardini G., Schettino V. Density functional calculation of structural and vibrational properties of glycerol // Journal of Physical Chemistry A. ‒ 2000. ‒ T. 104, № 22. ‒ C. 5351-5357. Saratov Fall Meeting 2015

  10. References Chen B., Sigmund E. E., Halperin W. P. Stokes-Einstein relation in supercooled aqueous solutions of glycerol // Physical Review Letters. ‒ 2006. ‒ T. 96, № 14. ‒ C. 4. Chen C., Li W. Z., Song Y. C., Yang J. Hydrogen bonding analysis of glycerol aqueous solutions: A molecular dynamics simulation study // Journal of Molecular Liquids. ‒ 2009. ‒ T. 146, № 1-2. ‒ C. 23-28. Cheng N. S. Formula for the viscosity of a glycerol-water mixture // Industrial & Engineering Chemistry Research. ‒ 2008. ‒ T. 47, № 9. ‒ C. 3285-3288. Cocks F. H., Hildebrandt W. H., Shepard M. L. Comparison of the low-temperature crystallization of glasses in the ternary systems H2O-NaCl-dimethyl sulfoxide and H2O-NaCl-glycerol // Journal of Applied Physics. ‒ 1975. ‒ T. 46, № 8. ‒ C. 3444-3448. Compernolle S., Muller J. F. Henry's law constants of polyols // Atmospheric Chemistry and Physics. ‒ 2014. ‒ T. 14, № 23. ‒ C. 12815-12837. Cunsolo A. On the absence of a positive sound dispersion in the THz dynamics of glycerol: an inelastic x-ray scattering study // Journal of Physics-Condensed Matter. ‒ 2012. ‒ T. 24, № 37. ‒ C. 8. Cunsolo A. The THz Spectrum of Density Fluctuations of Water: The Viscoelastic Regime // Advances in Condensed Matter Physics. ‒ 2015. ‒ C. 24. Cunsolo A., Kodituwakku C. N., Bencivenga F., Said A. H. Shear propagation in the terahertz dynamics of water-glycerol mixtures // Journal of Chemical Physics. ‒ 2013. ‒ T. 139, № 18. ‒ C. 8. Cunsolo A., Kodituwakku C. N., Bencivenga F., Said A. H. Shear propagation in the terahertz dynamics of water-glycerol mixtures // Journal of Chemical Physics. ‒ 2013. ‒ T. 139, № 18. ‒ C. 184507-1-184507-8. Cunsolo A., Leu B. M., Said A. H., Cai Y. Q. Structural and microscopic relaxations in glycerol: An inelastic x-ray scattering study // Journal of Chemical Physics. ‒ 2011. ‒ T. 134, № 18. ‒ C. 184502-1-184502-6. Dashnau J. L., Nucci N. V., Sharp K. A., Vanderkooi J. M. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures // Journal of Physical Chemistry B. ‒ 2006. ‒ T. 110, № 27. ‒ C. 13670-13677. Dave A. C., Loveday S. M., Anema S. G., Jameson G. B., Singh H. Modulating beta-LactoglobulinNanofibril Self-Assembly at pH 2 Using Glycerol and Sorbitol // Biomacromolecules. ‒ 2014. ‒ T. 15, № 1. ‒ C. 95-103. Demuth D., Haase N., Malzacher D., Vogel M. Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures // Biochimica Et BiophysicaActa-Proteins and Proteomics. ‒ 2015. ‒ T. 1854, № 8. ‒ C. 995-1000. Egorov A. V., Lyubartsev A. P., Laaksonen A. Molecular Dynamics Simulation Study of Glycerol-Water Liquid Mixtures // Journal of Physical Chemistry B. ‒ 2011. ‒ T. 115, № 49. ‒ C. 14572-14581. Egorov G. I., Makarov D. M. Volumetric properties of binary liquid-phase mixture of (water plus glycerol) at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa // Journal of Chemical Thermodynamics. ‒ 2014. ‒ T. 79. ‒ C. 135-158. Egorov G. I., Makarov D. M. Volumetric properties of binary liquid-phase mixture of (water + glycerol) at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa (vol 79, pg 135, 2014) // Journal of Chemical Thermodynamics. ‒ 2015. ‒ T. 81. ‒ C. 323-326. Egorov G. I., Makarov D. M., Kolker A. M. Volume properties of liquid mixture of water plus glycerol over the temperature range from 278.15 to 348.15 K at atmospheric pressure // ThermochimicaActa. ‒ 2013. ‒ T. 570. ‒ C. 16-26. Saratov Fall Meeting 2015

  11. References Elamin K., Swenson J. Brownian motion of single glycerol molecules in an aqueous solution as studied by dynamic light scattering // Physical Review E. ‒ 2015. ‒ T. 91, № 3. ‒ C. 6. Elwenspoek M., Soltwisch M., Quitmann D. Molecular motion in supercooled glycerol // Molecular Physics. ‒ 1978. ‒ T. 35, № 5. ‒ C. 1221-1231. Esposito A., Comez L., Cinelli S., Scarponi F., Onori G. Influence of Glycerol on the Structure and Thermal Stability of Lysozyme: A Dynamic Light Scattering and Circular Dichroism Study // Journal of Physical Chemistry B. ‒ 2009. ‒ T. 113, № 51. ‒ C. 16420-16424. Evers F., Steitz R., Tolan M., Czeslik C. Reduced Protein Adsorption by Osmolytes // Langmuir. ‒ 2011. ‒ T. 27, № 11. ‒ C. 6995-7001. Fennell C. J., Kehoe C. W., Dill K. A. Modeling aqueous solvation with semi-explicit assembly // Proceedings of the National Academy of Sciences of the United States of America. ‒ 2011. ‒ T. 108, № 8. ‒ C. 3234-3239. G. J. Cuello F. J. Bermejo R. Fayos R. Fernandez-Perea F. Trouw C. Tam H S. Microscopic dynamics in glycerol: a key to understanding some aspects of its relaxationalbehaviour // Molecular Physics. ‒ 1998. ‒ T. 93, № 2. ‒ C. 341-346. G. J. Cuello F. J. B., R. Fayos, R. Fernández-Perea, A. Criado, F. Trouw, C. Tam, H. Schober, E. Enciso, and N. G. Almarza. Anharmonic dynamics in crystalline, glassy, and supercooled-liquid glycerol: A case study on the onset of relaxational behavior // Phys. Rev. B. ‒ 1998. ‒ T. 57. ‒ C. 8254. Giugni A., Cunsolo A. Structural relaxation in the dynamics of glycerol: a joint visible, UV and x-ray inelastic scattering study // Journal of Physics-Condensed Matter. ‒ 2006. ‒ T. 18, № 3. ‒ C. 889-902. Gogelein C., Wagner D., Cardinaux F., Nagele G., Egelhaaf S. U. Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments // Journal of Chemical Physics. ‒ 2012. ‒ T. 136, № 1. ‒ C. 015102-1-015102-12. Gonzalez J. A. T., Longinotti M. P., Corti H. R. The Viscosity of Glycerol-Water Mixtures Including the Supercooled Region // Journal of Chemical and Engineering Data. ‒ 2011. ‒ T. 56, № 4. ‒ C. 1397-1406. Gonzalez J. A. T., Longinotti M. P., Corti H. R. Diffusion-Viscosity Decoupling in Supercooled Glycerol Aqueous Solutions // Journal of Physical Chemistry B. ‒ 2015. ‒ T. 119, № 1. ‒ C. 257-262. Gu Y. L., Jerome F. Glycerol as a sustainable solvent for green chemistry // Green Chemistry. ‒ 2010. ‒ T. 12, № 7. ‒ C. 1127-1138. Hayashi Y., Puzenko A., Balin I., Ryabov Y. E., Feldman Y. Relaxation dynamics in glycerol-water mixtures. 2. Mesoscopic feature in water rich mixtures // Journal of Physical Chemistry B. ‒ 2005. ‒ T. 109, № 18. ‒ C. 9174-9177. Hayashi Y., Puzenko A., Feldman Y. Ice nanocrystals in glycerol-water mixtures // Journal of Physical Chemistry B. ‒ 2005. ‒ T. 109, № 35. ‒ C. 16979-16981. Hayashi Y., Puzenko A., Feldman Y. Dynamic features of glycerol-water mixtures // AIP Conference Proceedings. ‒ 2006. ‒ T. 832. ‒ C. 99-108. Husecken A. K., Evers F., Czeslik C., Tolan M. Effect of Urea and Glycerol on the Adsorption of Ribonuclease A at the Air-Water Interface // Langmuir. ‒ 2010. ‒ T. 26, № 16. ‒ C. 13429-13435. Hussels M., Brecht M. Effect of Glycerol and PVA on the Conformation of Photosystem I // Biochemistry. ‒ 2011. ‒ T. 50, № 18. ‒ C. 3628-3637. Hussels M., Brecht M. Evidence for direct binding of glycerol to photosystem I // Febs Letters. ‒ 2011. ‒ T. 585, № 15. ‒ C. 2445-2449. Saratov Fall Meeting 2015

  12. References Inaba A., Andersson O. Multiple glass transitions and two step crystallization for the binary system of water and glycerol // ThermochimicaActa. ‒ 2007. ‒ T. 461, № 1-2. ‒ C. 44-49. Ishiguro H., Koike K. Three-dimensional behavior of ice crystals and biological cells during freezing of cell suspensions // Annals of the New York Academy of Sciences. ‒ 1998. ‒ T. 858 (Biotransport: Heat and Mass Transfer in Living Systems). ‒ C. 235-244. Jahn D. A., Akinkunmi F. O., Giovambattista N. Effects of Temperature on the Properties of Glycerol: A Computer Simulation Study of Five Different Force Fields // Journal of Physical Chemistry B. ‒ 2014. ‒ T. 118, № 38. ‒ C. 11284-11294. James R. A., Phillips L. F. Onsager heat of transport for water vapour at the surface of glycerol-water mixtures // Chemical Physics Letters. ‒ 2006. ‒ T. 425, № 1-3. ‒ C. 49-52. Jansson H., Kargl F., Fernandez-Alonso F., Swenson J. Dynamics of a protein and its surrounding environment: A quasielastic neutron scattering study of myoglobin in water and glycerol mixtures // Journal of Chemical Physics. ‒ 2009. ‒ T. 130, № 20. ‒ C. 205101-1-205101-13. Kataoka Y., Kitadai N., Hisatomi O., Nakashima S. Nature of Hydrogen Bonding of Water Molecules in Aqueous Solutions of Glycerol by Attenuated Total Reflection (ATR) Infrared Spectroscopy // Applied Spectroscopy. ‒ 2011. ‒ T. 65, № 4. ‒ C. 436-441. Kaur H., Koley S., Ghosh S. Probe Dependent Solvation Dynamics Study in a Microscopically Immiscible Dimethyl Sulfoxide-Glycerol Binary Solvent // Journal of Physical Chemistry B. ‒ 2014. ‒ T. 118, № 27. ‒ C. 7577-7585. Khan S., Adnan M., Haque S., Lohani M., Khan M., Tripathi C. K. M. A Modified Lumry-Eyring Analysis for the Determination of the Predominant Mechanism Underlying the Diminution of Protein Aggregation by Glycerol // Cell Biochemistry and Biophysics. ‒ 2014. ‒ T. 68, № 1. ‒ C. 133-142. Klotz S., Takemura K., Strassle T., Hansen T. Freezing of glycerol-water mixtures under pressure // Journal of Physics-Condensed Matter. ‒ 2012. ‒ T. 24, № 32. ‒ C. 6. Koley S., Kaur H., Ghosh S. Probe dependent anomalies in the solvation dynamics of coumarin dyes in dimethyl sulfoxide-glycerol binary solvent: confirming the local environments are different for coumarin dyes // Physical Chemistry Chemical Physics. ‒ 2014. ‒ T. 16, № 40. ‒ C. 22352-22363. Konov K. B., Isaev N. P., Dzuba S. A. Glycerol penetration profile in phospholipid bilayers measured by ESEEM of spin-labelled lipids // Molecular Physics. ‒ 2013. ‒ T. 111, № 18-19. ‒ C. 2882-2886. Konov K. B., Isaev N. P., Dzuba S. A. Low-Temperature Molecular Motions in Phospholipid Bilayers in Presence of Glycerol as Studied by Spin-Echo EPR of Spin Labels // Applied Magnetic Resonance. ‒ 2014. ‒ T. 45, № 10. ‒ C. 1117-1126. Kyrychenko A., Dyubko T. S. Molecular dynamics simulations of microstructure and mixing dynamics of cryoprotective solvents in water and in the presence of a lipid membrane // Biophysical Chemistry. ‒ 2008. ‒ T. 136, № 1. ‒ C. 23-31. Lan D. W., Liu L. H., Dong L. N., Li W. B., Li Q., Yan L. G. Excess Molar Properties and Viscosities of Glycerol plus Water System at 298.15 to 318.15 K // Asian Journal of Chemistry. ‒ 2013. ‒ T. 25, № 5. ‒ C. 2709-2712. Li R. Y., D'Agostino C., McGregor J., Mantle M. D., Zeitler J. A., Gladden L. F. Mesoscopic Structuring and Dynamics of Alcohol/Water Solutions Probed by Terahertz Time-Domain Spectroscopy and Pulsed Field Gradient Nuclear Magnetic Resonance // Journal of Physical Chemistry B. ‒ 2014. ‒ T. 118, № 34. ‒ C. 10156-10166. Saratov Fall Meeting 2015

  13. References Mah S. K., Chai S. P., Wu T. Y. Dehydration of glycerin solution using pervaporation: HybSi and polydimethylsiloxane membranes // Journal of Membrane Science. ‒ 2014. ‒ T. 450. ‒ C. 440-446. Mah S. K., Chang C. C. H., Wu T. Y., Chai S. P. The study of reverse osmosis on glycerin solution filtration: Dead-end and crossflow filtrations, transport mechanism, rejection and permeability investigations // Desalination. ‒ 2014. ‒ T. 352. ‒ C. 66-81. Marcolli C., Peter T. Water activity in polyol/water systems: new UNIFAC parameterization // Atmospheric Chemistry and Physics. ‒ 2005. ‒ T. 5, № 2. ‒ C. 1545-1555. Marcus Y. Some thermodynamic and structural aspects of mixtures of glycerol with water // Physical Chemistry Chemical Physics. ‒ 2000. ‒ T. 2, № 21. ‒ C. 4891-4896. Mobley D. L., Guthrie J. P. FreeSolv: a database of experimental and calculated hydration free energies, with input files // Journal of Computer-Aided Molecular Design. ‒ 2014. ‒ T. 28, № 7. ‒ C. 711-720. Murata K. I., Tanaka H. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture // Nature Materials. ‒ 2012. ‒ T. 11, № 5. ‒ C. 436-443. Murphy T., Hayes R., Imberti S., Warr G. G., Atkin R. Nanostructure of an ionic liquid-glycerol mixture // Physical Chemistry Chemical Physics. ‒ 2014. ‒ T. 16, № 26. ‒ C. 13182-13190. Pieraccini S., Conti S., Chaurasia S., Sironi M. Modelling the effect of osmolytes on peptide mechanical unfolding // Chemical Physics Letters. ‒ 2013. ‒ T. 578. ‒ C. 138-143. Politi R., Sapir L., Harries D. The Impact of Polyols on Water Structure in Solution: A Computational Study // Journal of Physical Chemistry A. ‒ 2009. ‒ T. 113, № 26. ‒ C. 7548-7555. Politi R., Sapir L., Harries D. The Impact of Polyols on Water Structure in Solution: A Computational Study // Journal of Physical Chemistry A. ‒ 2009. ‒ T. 113, № 26. ‒ C. 7548-7555. Puzenko A., Hayashi Y., Feldman Y. Space and time scaling in glycerol-water mixtures // Journal of Non-Crystalline Solids. ‒ 2007. ‒ T. 353, № 47-51. ‒ C. 4518-4522. Puzenko A., Hayashi Y., Ryabov Y. E., Balin I., Feldman Y., Kaatze U., Behrends R. Relaxation dynamics in glycerol-water mixtures: I. Glycerol-rich mixtures // Journal of Physical Chemistry B. ‒ 2005. ‒ T. 109, № 12. ‒ C. 6031-6035. Rehfeldt S., Stichlmair J. Measurement and prediction of multicomponent diffusion coefficients in four ternary liquid systems // Fluid Phase Equilibria. ‒ 2010. ‒ T. 290, № 1-2. ‒ C. 1-14. Reinsberg S. A., Qiu X. H., Wilhelm M., Spiess H. W., Ediger M. D. Length scale of dynamic heterogeneity in supercooled glycerol near T-g // Journal of Chemical Physics. ‒ 2001. ‒ T. 114, № 17. ‒ C. 7299-7302. Romero C. M., Paez M. S. Isopiestic determination of osmotic and activity coefficients of aqueous solutions of aliphatic polyols at 298.15 K // Fluid Phase Equilibria. ‒ 2006. ‒ T. 240, № 2. ‒ C. 140-143. Saratov Fall Meeting 2015

  14. References Root L. J., Berne B. J. Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation // The Journal of Chemical Physics. ‒ 1997. ‒ T. 107, № 11. ‒ C. 4350-4357. Rudakov A. M., Sergievskii V. V. Activities of the components of glycerol-water binary solutions at 298.15 K // Russian Journal of Physical Chemistry. ‒ 2006. ‒ T. 80, № 11. ‒ C. 1804-1808. Schindele J., Reiser A., Enss C. Fluctuation-Dissipation Theorem in Liquid and Glassy Glycerol: Frequency-Dependent Dielectric Permittivity and Dielectric Polarization Fluctuation Measurements // Physical Review Letters. ‒ 2011. ‒ T. 107, № 9. ‒ C. 5. Schroter K., Donth E. Viscosity and shear response at the dynamic glass transition of glycerol // Journal of Chemical Physics. ‒ 2000. ‒ T. 113, № 20. ‒ C. 9101-9108. Segur J. B., Oberstar H. E. Viscosity of Glycerol and Its Aqueous Solutions // Ind. Eng. Chem. ‒ 1951. ‒ T. 43, № 9. ‒ C. 2117–2120. Shen Y. W., Hoffmann H., Jiang L. H., Hao J. C., Liu Z. H. Bilayer swelling of nonionic surfactant and sodium dodecylsulfate mixed system by refractive-index matching // Colloid and Polymer Science. ‒ 2012. ‒ T. 290, № 15. ‒ C. 1493-1499. Sinibaldi R., Ortore M. G., Spinozzi F., Carsughi F., Frielinghaus H., Cinelli S., Onori G., Mariani P. Preferential hydration of lysozyme in water/glycerol mixtures: A small-angle neutron scattering study // Journal of Chemical Physics. ‒ 2007. ‒ T. 126, № 23. ‒ C. 235101-1-235101-9. Soltwisch M. The X-ray Structure Factor of Liquid Glycerol // ZeitschriftfürNaturforschung A. ‒ 1981. ‒ T. 36, № 10. ‒ C. 1045-1051. Soltwisch M., Elwenspoek M., Quitmann D. Molecular motion in supercooled glycerol a Mössbauer scattering experiment // Molecular Physics. ‒ 1977. ‒ T. 34, № 1. ‒ C. 33-50. Sou K., Nishikawa K., Koga Y., Tozaki K. High-resolution calorimetry on thermal behavior of glycerol (I): Glass transition, crystallization and melting, and discovery of a solid-solid transition // Chemical Physics Letters. ‒ 2011. ‒ T. 506, № 4-6. ‒ C. 217-220. Spinozzi F., Ortore M. G., Sinibaldi R., Mariani P., Esposito A., Cinelli S., Onori G. Microcalorimetric study of thermal unfolding of lysozyme in water/glycerol mixtures: An analysis by solvent exchange model // Journal of Chemical Physics. ‒ 2008. ‒ T. 129, № 3. ‒ C. 9. Takamura K., Fischer H., Morrow N. R. Physical properties of aqueous glycerol solutions // Journal of Petroleum Science and Engineering. ‒ 2012. ‒ T. 98-99. ‒ C. 50-60. Tanaka H. Importance of many-body orientational correlations in the physical description of liquids // Faraday Discussions. ‒ 2013. ‒ T. 167. ‒ C. 9-76. Thomas A. S., Elcock A. H. Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the Hofmeister effect // Journal of the American Chemical Society. ‒ 2007. ‒ T. 129, № 48. ‒ C. 14887-14898. To E. C. H., Davies J. V., Tucker M., Westh P., Trandum C., Suh K. S. H., Koga Y. Excess chemical potentials, excess partial molar enthalpies, entropies, volumes, and isobaric thermal expansivities of aqueous glycerol at 25°C // Journal of Solution Chemistry. ‒ 1999. ‒ T. 28, № 10. ‒ C. 1137-1157. Toal S., Amidi O., Schweitzer-Stenner R. Conformational Changes of Trialanine Induced by Direct Interactions between Alanine Residues and Alcohols in Binary Mixtures of Water with Glycerol and Ethanol // Journal of the American Chemical Society. ‒ 2011. ‒ T. 133, № 32. ‒ C. 12728-12739. Saratov Fall Meeting 2015

  15. References Tomlinson D. J. Temperature dependent self-diffusion coefficient measurements of glycerol by the pulsed N.M.R. technique // Molecular Physics. ‒ 1973. ‒ T. 25, № 3. ‒ C. 735-738. Towey J. J., Dougan L. Structural Examination of the Impact of Glycerol on Water Structure // Journal of Physical Chemistry B. ‒ 2012. ‒ T. 116, № 5. ‒ C. 1633-1641. Towey J. J., Soper A. K., Dougan L. Preference for Isolated Water Molecules in a Concentrated Glycerol-Water Mixture // Journal of Physical Chemistry B. ‒ 2011. ‒ T. 115, № 24. ‒ C. 7799-7807. Towey J. J., Soper A. K., Dougan L. The structure of glycerol in the liquid state: a neutron diffraction study // Physical Chemistry Chemical Physics. ‒ 2011. ‒ T. 13, № 20. ‒ C. 9397-9406. Tsuruta T., Ishimoto Y., Masuoka T. Effects of glycerol on intracellular ice formation and dehydration of onion epidermis // Annals of the New York Academy of Sciences. ‒ 1998. ‒ T. 858 (Biotransport: Heat and Mass Transfer in Living Systems). ‒ C. 217-226. Vagenende V., Yap M. G. S., Trout B. L. Mechanisms of Protein Stabilization and Prevention of Protein Aggregation by Glycerol // Biochemistry. ‒ 2009. ‒ T. 48, № 46. ‒ C. 11084-11096. Vagenende V., Yap M. G. S., Trout B. L. Molecular Anatomy of Preferential Interaction Coefficients by Elucidating Protein Solvation in Mixed Solvents: Methodology and Application for Lysozyme in Aqueous Glycerol // Journal of Physical Chemistry B. ‒ 2009. ‒ T. 113, № 34. ‒ C. 11743-11753. Vanderkooi J. M., Dashnau J. L., Zelent B. Temperature excursion infrared (TEIR) spectroscopy used to study hydrogen bonding between water and biomolecules // Biochimica Et BiophysicaActa-Proteins and Proteomics. ‒ 2005. ‒ T. 1749, № 2. ‒ C. 214-233. Verevkin S. P., Zaitsau D. H., Emel'yanenko V. N., Zhabina A. A. Thermodynamic properties of glycerol: Experimental and theoretical study // Fluid Phase Equilibria. ‒ 2015. ‒ T. 397. ‒ C. 87-94. Vispa A., Rovira-Esteva M., Ruiz-Martin M. D., Busch S., Unruh T., Pardo L. C., Tamarit J. L. Microscopic dynamics of glycerol: a QENS study // Journal of Physics: Conference Series (). ‒ 2014. ‒ T. 549. ‒ C. 012013-1-012013-4. Wolfe M., Jonas J. Reorientational motions in compressed viscous fluids: Selectively deuterated glycerol // The Journal of Chemical Physics. ‒ 1979. ‒ T. 71, № 8. ‒ C. 3252-3262. Wu L. Z., Ma B. L., Sheng Y. B., Wang W. Equilibrium and kinetic analysis on the folding of hen egg lysozyme in the aqueous-glycerol solution // Journal of Molecular Structure. ‒ 2008. ‒ T. 891, № 1-3. ‒ C. 167-172. Yongye A. B., Foley B. L., Woods R. J. On achieving experimental accuracy from molecular dynamics simulations of flexible molecules: Aqueous glycerol // Journal of Physical Chemistry A. ‒ 2008. ‒ T. 112, № 12. ‒ C. 2634-2639. Zelent B., Buettger C., Grimsby J., Sarabu R., Vanderkooi J. M., Wand A. J., Matschinsky F. M. Thermal stabilty of glucokinase (GK) as influenced by the substrate glucose, an allosteric glucokinase activator drug (GKA) and the osmolytes glycerol and urea // Biochimica Et BiophysicaActa-Proteins and Proteomics. ‒ 2012. ‒ T. 1824, № 5. ‒ C. 769-784. Zhang N., Li W. Z., Chen C., Zuo J. G., Weng L. D. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol // Bulletin of the Korean Chemical Society. ‒ 2013. ‒ T. 34, № 9. ‒ C. 2711-2719. Saratov Fall Meeting 2015

  16. References Zhao J. H., Hashmi A., Xu J., Xue W. A compact lab-on-a-chip nanosensor for glycerol detection // Applied Physics Letters. ‒ 2012. ‒ T. 100, № 24. ‒ C. 4. Zhou M., Yuan X. G., Zhang Y. H., Yu K. T. Local Composition Based Maxwell-Stefan Diffusivity Model for Binary Liquid Systems // Industrial & Engineering Chemistry Research. ‒ 2013. ‒ T. 52, № 31. ‒ C. 10845-10852. Zondervan R., Kulzer F., Berkhout G. C. G., Orrit M. Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules // Proceedings of the National Academy of Sciences of the United States of America. ‒ 2007. ‒ T. 104, № 31. ‒ C. 12628-12633. Касян Н. А., Красникова А. О., Ващенко О. В., Лисецкий Л. Н., Зинченко А. В., Компаниец А. М., Ратушная М. В. Влияние криопротекторов группы оскиэтилированных производных глицерина на фазовые переходы модельных мембран на основе ДПФХ // Биополимеры и Клетка (Biopolymers and Cell). ‒ 2015. ‒ T. 31, № 2. ‒ C. 146-153. Saratov Fall Meeting 2015

More Related