1 / 9

Identify solutions of linear equations in two variables.

Objectives. Identify solutions of linear equations in two variables. Solve systems of linear equations in two variables by graphing.

ecruz
Download Presentation

Identify solutions of linear equations in two variables.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Objectives Identify solutions of linear equations in two variables. Solve systems of linear equations in two variables by graphing.

  2. A system of linear equations is a set of two or more linear equations containing two or more variables. A solution of a system of linear equations with two variables is an ordered pair that satisfies each equation in the system. So, if an ordered pair is a solution, it will make both equations true. System of Equations: The point where two lines intersect.

  3. 3x – y 13 3(5) – 2 13 0 2 – 2 0 15 – 2 13 0 0  13 13  Example 1A: Identifying Systems of Solutions Tell whether the ordered pair is a solution of the given system. (5, 2); 3x – y = 13 Substitute 5 for x and 2 for y in each equation in the system. The ordered pair (5, 2) makes both equations true. (5, 2) is the solution of the system.

  4. –x + y = 2 x + 3y = 4 –(–2) + 2 2 –2 + 3(2) 4 4 2 –2 + 6 4 4 4 Example 1B: Identifying Systems of Solutions Tell whether the ordered pair is a solution of the given system. x + 3y = 4 (–2, 2); –x + y = 2 Substitute –2 for x and 2 for y in each equation in the system.  The ordered pair (–2, 2) makes one equation true but not the other. (–2, 2) is not a solution of the system.

  5. 2x + y = 5 (1, 3); –2x + y = 1 2x + y = 5 –2x + y = 1 2(1) + 3 5 –2(1) + 3 1 –2 + 3 1 2 + 3 5   1 1 5 5 Check It Out! Example 1a Tell whether the ordered pair is a solution of the given system. Substitute 1 for x and 3 for y in each equation in the system. The ordered pair (1, 3) makes both equations true. (1, 3) is the solution of the system.

  6. x– 2y = 4 3x + y = 6 3(2)+(–1) 6 2 – 2(–1) 4 6 – 1 6 2 + 2 4  5 6 4 4 Check It Out! Example 1b Tell whether the ordered pair is a solution of the given system. x –2y = 4 (2, –1); 3x + y = 6 Substitute 2 for x and –1 for y in each equation in the system. The ordered pair (2, –1) makes one equation true, but not the other. (2, –1) is not a solution of the system.

  7. y = 2x – 1 y = –x + 5 All solutions of a linear equation are on its graph. To find a solution of a system of linear equations, you need a point that each line has in common. In other words, you need their point of intersection. The point (2, 3) is where the two lines intersect and is a solution of both equations, so (2, 3) is the solution of the systems.

  8. Check Substitute (–1, –1) into the system. y = –2x– 3 y = x (–1) (–1) (–1)–2(–1)–3  –12– 3 –1 –1  –1 – 1 Example 2A: Solving a System Equations by Graphing Solve the system by graphing. Check your answer. y = x Graph the system. y = –2x – 3 The solution appears to be at (–1, –1). y = x • (–1, –1) y = –2x – 3 (–1, –1) is the solution of the system.

  9. y = x + 5 y = x+ 5 y = –2x– 1 3–2+ 5 3 –2(–2)– 1 y = –2x – 1  3 3 3 4 – 1  3 3 Check It Out! Example 2a Solve the system by graphing. Check your answer. y = –2x – 1 Graph the system. y = x + 5 The solution appears to be (–2, 3). Check Substitute (–2, 3) into the system. (–2, 3) is the solution of the system.

More Related