1 / 27

Multi-Agent Systems: Overview and Research Directions

Multi-Agent Systems: Overview and Research Directions. CMSC 477/677 Spring 2005 Prof. Marie desJardins. Outline. Agent Architectures Logical Cognitive Reactive Theories of Mind Multi-Agent Systems Cooperative multi-agent systems Competitive multi-agent systems. Agent Architectures.

Download Presentation

Multi-Agent Systems: Overview and Research Directions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multi-Agent Systems:Overview and Research Directions CMSC 477/677 Spring 2005 Prof. Marie desJardins

  2. Outline • Agent Architectures • Logical • Cognitive • Reactive • Theories of Mind • Multi-Agent Systems • Cooperative multi-agent systems • Competitive multi-agent systems

  3. Agent Architectures

  4. Agent Architectures • Logical Architectures • Cognitive Architectures • Reactive Architectures • Theories of Mind

  5. Logical Architectures Formal models of reasoning and agent interaction • GOLOG*: Logic programming language • BDI Models: Explicitly model beliefs, desires, and intentions of agents

  6. Cognitive Architectures Computational models of human cognition • ACT-R*, Soar*: Production rule architectures, very human-inspired • PRODIGY*: Planning-centric architecture, focused on learning, less human-inspired • APEX*: “Sketchy planning;” focus on human performance in multitasking, action selection, resource limitations

  7. Reactive Architectures Perceive and react (a.k.a. “Representation, schmepresentation!”) • Brooks: The original reactivist • PENGI: Reactive video game player • AuRA: Hybrid deliberative/reactive robot architecture

  8. Theories of Mind Forays into philosophy and cognitive psychology • Society of Mind (Minsky): The brain is a collection of autonomous agents, all working in harmony • Emotion: Do we need emotions to behave like humans, or to interact with humans? • Consciousness: What is it? Where does it come from? Will our AIs ever have it?

  9. Multi-Agent Systems

  10. Multi-agent systems • Jennings et al.’s key properties: • Situated • Autonomous • Flexible: • Responsive to dynamic environment • Pro-active / goal-directed • Social interactions with other agents and humans • Research questions: How do we design agents to interact effectively to solve a wide range of problems in many different environments?

  11. Aspects of multi-agent systems • Cooperative vs. competitive • Homogeneous vs. heterogeneous • Macro vs. micro • Interaction protocols and languages • Organizational structure • Mechanism design / market economics • Learning

  12. Topics in multi-agent systems • Cooperative MAS: • Distributed problem solving: Less autonomy • Distributed planning: Models for cooperation and teamwork • Competitive or self-interested MAS: • Distributed rationality: Voting, auctions • Negotiation: Contract nets

  13. Typical (cooperative) MAS domains • Distributed sensor network establishment • Distributed vehicle monitoring • Distributed delivery

  14. Cooperative Multi-Agent Systems

  15. Distributed problem solving/planning • Cooperative agents, working together to solve complex problems with local information • Partial Global Planning (PGP): A planning-centric distributed architecture • SharedPlans: A formal model for joint activity • Joint Intentions: Another formal model for joint activity • STEAM: Distributed teamwork; influenced by joint intentions and SharedPlans

  16. Distributed problem solving • Problem solving in the classical AI sense, distributed among multiple agents • That is, formulating a solution/answer to some complex question • Agents may be heterogeneous or homogeneous • DPS implies that agents must be cooperative (or, if self-interested, then rewarded for working together)

  17. Competitive Multi-Agent Systems

  18. Distributed rationality • Techniques to encourage/coax/force self-interested agents to play fairly in the sandbox • Voting: Everybody’s opinion counts (but how much?) • Auctions: Everybody gets a chance to earn value (but how to do it fairly?) • Contract nets: Work goes to the highest bidder • Issues: • Global utility • Fairness • Stability • Cheating and lying

  19. Pareto optimality • S is a Pareto-optimal solution iff • S’ (x Ux(S’) > Ux(S) → y Uy(S’) < Uy(S)) • i.e., if X is better off in S’, then some Y must be worse off • Social welfare, or global utility, is the sum of all agents’ utility • If S maximizes social welfare, it is also Pareto-optimal (but not vice versa) Which solutions are Pareto-optimal? Y’s utility Which solutions maximize global utility (social welfare)? X’s utility

  20. Stability • If an agent can always maximize its utility with a particular strategy (regardless of other agents’ behavior) then that strategy is dominant • A set of agent strategies is in Nash equilibrium if each agent’s strategy Si is locally optimal, given the other agents’ strategies • No agent has an incentive to change strategies • Hence this set of strategies is locally stable

  21. Prisoner’s Dilemma Let's play! B A

  22. Prisoner’s Dilemma: Analysis • Pareto-optimal and social welfare maximizing solution: Both agents cooperate • Dominant strategy and Nash equilibrium: Both agents defect B A • Why?

  23. Voting • How should we rank the possible outcomes, given individual agents’ preferences (votes)? • Six desirable properties (which can’t all simultaneously be satisfied): • Every combination of votes should lead to a ranking • Every pair of outcomes should have a relative ranking • The ranking should be asymmetric and transitive • The ranking should be Pareto-optimal • Irrelevant alternatives shouldn’t influence the outcome • Share the wealth: No agent should always get their way 

  24. Voting protocols • Plurality voting: the outcome with the highest number of votes wins • Irrelevant alternatives can change the outcome: The Ross Perot factor • Borda voting: Agents’ rankings are used as weights, which are summed across all agents • Agents can “spend” high rankings on losing choices, making their remaining votes less influential • Binary voting: Agents rank sequential pairs of choices (“elimination voting”) • Irrelevant alternatives can still change the outcome • Very order-dependent

  25. Auctions • Many different types and protocols • All of the common protocols yield Pareto-optimal outcomes • But… Bidders can agree to artificially lower prices in order to cheat the auctioneer • What about when the colluders cheat each other? • (Now that’s really not playing nicely in the sandbox!)

  26. Contract nets • Simple form of negotiation • Announce tasks, receive bids, award contracts • Many variations: directed contracts, timeouts, bundling of contracts, sharing of contracts, … • There are also more sophisticated dialogue-based negotiation models

  27. Conclusions and directions • “Agent” means many different things • Different types of “multi-agent systems”: • Cooperative vs. competitive • Heterogeneous vs. homogeneous • Micro vs. macro • Lots of interesting/open research directions: • Effective cooperation strategies • “Fair” coordination strategies and protocols • Learning in MAS • Resource-limited MAS (communication, …)

More Related