100 likes | 186 Views
Section 5.3. Example 1. a. Add 2 x 3 – 5 x 2 + 3 x – 9 and x 3 + 6 x 2 + 11 in a vertical format. b. Add 3 y 3 – 2 y 2 – 7 y and -4 y 2 + 2 y – 5 in a horizontal format. b. (3 y 3 – 2 y 2 – 7 y ) + (-4 y 2 + 2 y – 5) 3 y 3 – 2 y 2 – 4 y 2 – 7 y + 2 y – 5
E N D
Example 1 • a. Add 2x3 – 5x2 + 3x – 9 and x3 + 6x2 + 11 in a vertical format. • b. Add 3y3 – 2y2 – 7y and -4y2 + 2y – 5 in a horizontal format.
b. (3y3 – 2y2 – 7y) + (-4y2 + 2y – 5) • 3y3 – 2y2 – 4y2 – 7y + 2y – 5 • 3y3 – 6y2 – 5y – 5 a. 3x3 + x2 + 3x + 2
Example 2 • a. Subtract 3x3 + 2x2 – x + 7 from • 8x3 – x2 – 5x + 1 in a vertical format. • b. Subtract 5z2 – z + 3 from 4z2 + 9z – 12 in horizontal format.
b. (4z2 + 9z – 12) – (5z2 – z + 3) • 4z2 + 9z – 12 – 5z2 + z – 3 • 4z2 – 5z2 + 9z + z – 12 – 3 • -z2 + 10z – 15 • Do Guided Practice #1 and #2. a. 5x3 − 3x2 − 4x − 6
Example 3 • a. Multiply -2y2 + 3y – 6 and y – 2 in a vertical format. • b. Multiply x + 3 and 3x2 – 2x + 4 using the box method.
a. 4y2 − 6y + 12 -2y3 + 3y2 − 6y -2y3 + 7y2 − 12y +12
b. (x + 3)(3x2 – 2x + 4) = 3x3 + 7x2 – 2x + 12 3x2 -2x 4 -2x2 4x 3x3 x -6x 3 9x2 12
Example 4 • Multiply x – 5, x + 1, and x + 3. • (x – 5)(x + 1)(x + 3) = (x2 – 4x – 5)(x + 3) • = x3 – x2 – 17x – 15 x2 -4x -5 -4x2 -5x x3 x -12x 3 3x2 -15 Read the key concept on p. 347.
Example 5 • a. (3t + 4)(3t – 4) = • b. (8x – 3)2 = • c. (pq + 5)3 = (3t)2 – 42 = 9t2 – 16 (8x)2 – 2(8x)(3) + (-3)2 = 64x2 – 48x + 9 (pq)3 + 3(pq)2(5) + 3(pq)(5)2 + (5)3 = p3q3 + 15p2q2 + 75pq + 125 Do Guided Practice #3, #4, and #5. HW: pp. 349-351 (4-48 mult. of 4, 54, 56, 58)