1 / 27

ECT* Trento, July 3-7, 2006

Study of Hadron in-Medium Properties in Antiproton-Nucleus Collisions. A. Gillitzer Institut für Kernphysik Forschungszentrum Jülich. ECT* Trento, July 3-7, 2006. Interaction of charmed hadrons with matter J/ y and y ‘ absorption In-medium mass of D mesons

edie
Download Presentation

ECT* Trento, July 3-7, 2006

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study of Hadron in-Medium Properties in Antiproton-Nucleus Collisions A. Gillitzer Institut für Kernphysik Forschungszentrum Jülich ECT* Trento, July 3-7, 2006

  2. Interaction of charmed hadrons with matter • J/y and y‘ absorption • In-medium mass of D mesons • In-medium mass of charmonium states • pd collisions: DN / DN interaction • Hadrons with light anti-quarks in matter • Antikaons ( K-, K0 ) • Antibaryons ( p, L ) • Summary _ _ _ _ _ _ Outline

  3. / A + A‘  J/y(y‘) + X 400 GeV/c p + A  J/y(y‘) + X sabs = 4.2  0.5 mb J/y sabs = 9.6  1.6 mb y‘ Final NA50 result:G. Borges, JPG 30 (2004) S1351; hep-ex/0505065 B. Allessandro et al., EPJC 33 (2004) 31; EPJC 35 (2005) 335 J/y nucleon interaction J/y as indicator for QGP formation in relativistic nucleus-nucleus collisions

  4. (2) (3) (1) J/y nucleon interaction What is known about J/y absorption in nuclei? A. Sibirtsev, K. Tsushima, and A.W. Thomas, Phys. Rev. C 63 (2001) 044906 Data: (1) ~20 GeV g + Be, Ta (SLAC) R.L. Andersen et al., Phys. Rev. Lett. 38 (1977) 263 (2) 200, 450, 800 GeV p+A NA38, NA51, E772 analysis: D. Kharzeev et al., Z. Phys. C 74 (1997) 307 (3) NA50 p + A recent

  5. _ p + A  J/y + X  m+m- + X  measure cross section as function of A and pp  deduce J/yN dissociation cross section at lower, well- defned J/y momentum _ K. Seth, Proc. Hirschegg 2001, p.183 J/y nucleon interaction Measurement at PANDA : _ p + A  J/y + X  e+e- + X note: peak position sensitive to J/y mass shift in medium

  6. _ • Simulation: p + Cu  m+m- + X • background scaled up • J/y signature: • high pm, coplanarity • J/y reconstructed with sM ~ 20 MeV • rate estimate for pp on resonance: • at L = 1031 cm-2s-1 • RJ/ymm (produced)  220 /d • scan of pp & variation of Atarget •  time consuming _ _ J/y J/y nucleon interaction: feasibility

  7. J/yy‘ bpp (2.12  0.10)  10-3 (2.07  0.31)  10-4 bmm(5.88  0.10)  10-2 (7.3  0.8)  10-3 Gtot(91.0  3.2) keV (281  17) keV pp 4.07 GeV/c 6.23 GeV/c y‘ nucleon interaction  branching rates reduced by factor ~80 as compared to J/y ; enhanced by factor ~3 by larger width  yield reduced by factor ~27, i.e. Ry‘mm (produced)  8 /d  difficult

  8. vacuum nuclear medium Pb p- 25 MeV p p+ K+ K 100 MeV K- D D- 50 MeV D+ Hayashigaki, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. Pseudoscalar mesons in nuclear matter • p : deeply bound pionic states • K+ : momentum shift in p+A • K- : controversely discussed • D : unknown A. Sibirtsev et al., Eur. Phys. J. A 6 (1999) 351

  9. D meson spectral distribution M.F.M. Lutz, C.L. Korpa, PLB 633 (2006) 43 • prediction: • two-mode structure of D+ • UD+ +32 MeV for main branch • resonance-hole state at M ~ 1.6 GeV • repulsive D- potential: UD-  +18 MeV

  10. self-consistent D + „dressed“ p and N self-consistent D D+ meson spectral distribution L. Tolos, J. Schaffner-Bielich, A. Mishra, PRC 70 (2004) 025203 • prediction: • relatively small D • in-medium changes • broad double-hump • structure of D meson • spectral distribution

  11. _ D/D-meson mass shift: observables _ • Subthreshold DD production • enhancement of cross section • due to attractive mass shift • ( analogy to K production ) • A. Sibirtsev, K. Tshusima, A.W. Thomas, • Eur. Phys. J. A 6 (1999) 351 • quantitative result under discussion • D+ yield reduced by absorption • no information on D mass splitting • final states: D- D+ X or D- Lc X • rates at Tp = 4.5 GeV: • s ~1…10 nb, L = 1031 cm-2s-1 •  R ~ feff x (860…8600) /d _ caveat: high D momentum + _

  12. _ D/D-meson mass shift • Width of charmonium states • close to DD threshold • assumes zero mass shift of • charmonium states • collisional width may dominate • measure cc  m+m- / e+e- _ GeV/c2 Mass y(33S1) 4 y(13D1) 3.8 _ 3,74 y(23S1) vacuum 3,64 3.6 1r0 cc2(13P2) 3,54 2r0 cc1(13P1) 3.4 cc1(13P0) y(3770) 3.2 y(13S1) hc(11S0) 3 Ye.S. Golubeva et al., EPJ A 17 (2003) 275

  13. _ D/D-meson mass shifts _ • D/D transverse momentum distribution • (  J. Pochodzalla, March ’05 ) • mean transverse momentum shifted by • attractive / repulsive potential • (see determination of K+ potential at ANKE) UK+ = +20  3 MeV • size of effect: • for  p (D)  ~ 3 GeV/c,  p(D)  ~ 0.3 GeV/c, U = 100 MeV [10 MeV] •  4% [0.4%] momentum shift   p(D) shift ~12 [1.2] MeV/c; • some 10 MeV potential should be visible

  14. How to get slow D mesons ? threshold D+D- production: pp = 6.44 GeV/c  pD  3.2 GeV/c high energy D+D- production: pp = 15 GeV/c  pD  1.67 GeV/c nucleon internal momentum: for p = 3pF , pp = 6.5 GeV/c  pD  0.52 GeV/c cooperative pNN process: e.g. pd  D-Lc+ , pp = 6.5 GeV/c  pD  0.38 GeV/c 2-step process: e.g. D+d head-on collision: MD  Md  pD  0 slow D  large suppression factors conclusion: study of D mesons at rest in nuclei extremely difficult _ _ _ _ _

  15. Charmonium mass shift [1] Peskin, NPB 156 (1979) 365, Luke et al., PLB 288 (1992) 355 [2] S.H. Lee, nucl-th/0310080, Hadron 2003 proceedings [3] Brodsky et al., PRL 64 (1990) 1011 [4] Klingel, Kim, Lee, Morath, Weise, PRL 82 (1999) 3396 [5] Lee, Ko, PRC 67 (2003) 038202

  16. t ~ 10…20 fm/c final state = e+e- / m+m- / gg / J/yg  _  p  t 10 fm/c (collisional broadening) ~ 1 fm Charmonium mass shift: observables S.H. Lee (Proc. Hadron 03) predicts few 10…100 events/day at L= 21032 cm-2s-1  ~ feff (1…10) events/day at L = 1031 cm-2s-1

  17. _ • Study of pd collisions • quasi-free D+D- (D0D0,DsDs) • production • D/D, Ds/Ds „beam“ hitting the • spectator nucleon _ _ _ _ 0 • reactions e.g.: • D+ n  D0 p charge exchange • D+ n  p0 Lc charm exchange • D+ n  Ds L strangeness creation • D+ n  K0,+ Xc charm exchange & strangeness creaction • Ds n  D-L strangeness exchange • … etc., + inelastic channels •  D meson & charmed hyperon resonance spectroscopy (high s!) • needs theoretical investigation ( see A. Sibirtsev, NPA 680 (2001) 274c ) + + +,0 - Study of D+N reactions

  18. _ D.B. Kaplan, A.E. Nelson, PLB 175 (1986) 57, PLB 192 (1987) 193 • K/K mass splitting at r0 predicted • repulsive for K, (more strongly) attractive for K • free KN I = 0 interaction repulsive (  L(1405) ) • semi-empirical fit of kaonic atoms: C.J. Batty et al., Phys. Rep. 287 (97) 385 • UK = - 50 … -200 MeV • L(1405)  KNI=0 potential model: • UK = -200 MeV, small width • Y. Akaishi, T. Yamazaki, PRC 65 (2002) 044005 • UK = - 600 MeV with nuclear shrinkage • Y. Akaishi et al., PLB 613 (2005) 140 • chiral unitarity models • UK = -50 … -70 MeV, large width • M. Lutz, PLB 426 (1998) 12 • A.Ramos, E.Oset, NPA 671 (2000) 481 • L. Tolos, A. Ramos, E. Oset, nucl-th/0603033 _ _ Antikaons in nuclear matter

  19. Observation of bound K-3N & K-2N systems ? KEK: 4He(K-stpd,p/n) T. Suzuki et al., PLB 597 (2004) 263 NPA (2005) 375c BppK-115MeV FINUDA at DAFNE K-stpd on light nuclei M. Agnello et al., PRL 94 (2005) 212303 BK190MeV More hints: T. Kishimoto et al., NPA 754 (2005) 383c N. Herrmann, Proc. EXA 05, Vienna Interpretation of both KEK and FINUDA data as deeply bound kaonic states critically discussed: E. Oset and H. Toki, nucl-th/0509048 V.K. Magas, E. Oset, A. Ramos, H. Toki, nucl-th/0601013  2-nucleon absorption K-NN  SN, LN BK170MeV

  20. _ • reaction: pp ff ~ recoilless sppff 4 mb at p = 1.4 GeV/c _ JETSET: PLB 345 (1995) 325 • kinematics: pp ~ 2 GeV/c : • high momentum K+K- : • PANDA-FS: qmax 5…10o • low momentum K- • captured in bound state • low momentum K+ • reconstruct K- potential • from fK+ missing mass _ Antikaons in nuclei at PANDA + gate on L in final state after nuclear K- absortption

  21. _ pp  ff: K+, K- ptrans vs. plong distributions p = 4 GeV/c p = 4 GeV/c p = 2 GeV/c p = 2 GeV/c

  22. Antikaons in nuclei at PANDA • Feasibility: • rate: R = feff Atarget fsurv  0.7103 /h at L = 1031 cm-2s-1 • missing mass resolution: dM ~ 18 MeV for dp/p = 1% • most demanding: detection of low momentum K+ • K+ from f decay at rest (p=127MeV/c): range = 0.5 g/cm2 (C) • requires: • good dp/p resolution forward spectrometer • K identification in forward spectrometer • K+ identification in MVD by dE/dx • detection of K-N  pL/pS •  detailed simulation necessary • (K identification, nuclear background) (f) (part)

  23. p = 400 MeV/c p K p K+ identification in MVD dE/dx of p,K,p at p = 0.4 GeV/c separation power vs. momentum dE/dx simulation: T. Stockmanns

  24. _ Antibaryons in nuclei : p _ _ • Study of pA scattering, p-atoms (LEAR): •  only imaginary potential visible; real part unknown ( 0 … - 300 MeV ) • NN  NN (G-parity) : large attraction • recent theoretical study of nuclear p potential: • I.N. Mishustin et al. (Frankfurt group), Phys. Rev. C 71 (2005) 035201 • predict deep potential & surprisingly small width • PANDA: p + A  pforward + (A-1)p • measure ReU also for large ImU • determine (A-1) spectral function with p + A  p + p + (A-1)* _ _ _ _ * _ _ M(A-1)p from MMp M(A-1) from MMpp _ _

  25. _ Antibaryons in nuclei : p • Feasibility: • ds/dW(180o) = 0.26 mb/sr at pp = 0.7 GeV/c • R. Bertini et al., Phys. Lett. B 228 (1989) 531 • qcm = 20o qlab = 8o  s = 100 mb (use 50 mb for pp ~ 2 GeV/c) • rate: R = feff Atarget fp  500 /s at L = 1031 cm-2s-1 • missing mass resolution: dM ~ 18 MeV for dp/p = 1% •  momentum resolution of forward spectrometer _ (p) (p) _ (part) _

  26. _ Antibaryons in nuclei : L _ • Nuclear L potential • Indication for reduced L absorption as compared to p absorption • from L/p ratio, L A-dependence in relativistic HI collisions • PANDA : • ~2 GeV/c p + A  Lforward + (A-1)*L • detect L pp- in forward detector: • ppp- = 101 MeV/c  q < 3o • ds/dWppLL(180o) = 2 mb/sr at • p = 1.77 GeV/c  s ~ 1mb • P.D. Barnes et al. (LEAR-PS185), • Phys. Rev. C 54 (1996) 2831 • rate: • R = feff Atarget  fL  10 /s _ _ _ _ _ _ _ _ _ (part)

  27. Charm in nuclear matter • - J/y absorption: first experiments in pA  charm + X • - D/D production: inclusive D, D, and Lc detection with nuclear • targets  sensitivity to D/D potential? • - DMD/D from cc width: difficult conceptually and experimentally • - cc mass shift: cc decay inside nucleus  size of cross section ? • - pd  charm + X: access to DN / DN interaction, Lc*, Sc*, Xc* • looks feasible but needs theoretical investigation • Antikaons and Antibaryons: K, p, L in nuclear matter • - implant hadrons inside nuclei at rest • - much larger cross sections • - requires good dp/p resolution of forward spectrometer (K: slow K+ PID) • - promising approach to determine K, p, L potential _ _ _ + _ _ _ _ _ _ _ _ _ _ _ _ Summary _ _

More Related