410 likes | 650 Views
信息引力 论的验证 Test the origin of gravity as an entropy force. 程曜 清华大学工程物理系 2010,March. Newton. 理性力学. 牛顿 1643-1727 图 : 维基百科. http://www.studio-ylin.com/cambridge/DSC06002.jpg. Einstein. 爱因斯坦 1879-1955 图 : 维基百科. 等效原理 : 重力弯曲空间 图 : 维基百科. Erik P. Verlinde. 重力由信息产生
E N D
信息引力论的验证Test the origin of gravity as an entropy force 程曜 清华大学工程物理系 2010,March
Newton 理性力学 牛顿1643-1727 图:维基百科 http://www.studio-ylin.com/cambridge/DSC06002.jpg.
Einstein 爱因斯坦1879-1955 图:维基百科 等效原理:重力弯曲空间 图:维基百科
Erik P. Verlinde 重力由信息产生 http://plus.maths.org/issue51/features/maldacena/HologramIllustration_small.jpg Erik P Verlinde 1962- 图:GuusDubbelman / de Volkskrant
J0806.3+1527 Binary white dwarfs 50,000 miles apart orbiting with period of 321s Right ascension: 08h 06m 23.20s, Declination: +15° 27' 30.20" Distance: 1600 light years, Mass: 0.5 (primary) / 0.5 (b) M☉ Frequency 0.374 min-1, GW amplitude 10-21 http://chandra.harvard.edu/photo/2005/j0806/
(,’) process De-excitation process should provide isotropic emission Long-lived Emission Cascade Decay n p+ n Long-lived isomeric state Bremsstrahlung Ground state Ground state
Dependence on Exposure I Phase transition of collective mode II III
Mollow TripletStrong coupling between photon and nuclei • Resonance • Strong field • Localization • Translational symmetry breaking • Macroscopic coherence • Macroscopic polarization • Rotational symmetry breaking • Irreversible nonlinear increase • Trapped collective mode • Phase transition i R Rabi frequency R 430 eV f R R R kink
Anomalous Emissions of 103mRh Cascade decay i k f Rh K edge Typical spectral profile of 103mRh emissions measured by the HPGe detector. 1: unknown 2: escapes of K lines, 3: K lines, 4: K lines, 5: escapes of , 6: pile-ups between K lines and their escapes, 7: , 8: pile-ups of K lines.
Anomalous Peaks Rotational symmetry breaking Goldstone mode 19.8 8keV =1/2(39.76 keV)
Anomalous Emissions of 93mNb 3 i 2 1 5 4 k f 6 Ei-Ef=30.8 keV Typical spectral profile of 93mNb emissions measured by the Si detector. 1: unknown 2: Zr K lines, 3: Nb K lines, 4: Zr K lines, 5: Nb K lines, 6: unknown.
Anomalous Emissions of 93mNb Massive Goldstone mode 15.4 keV =1/2(30.8 keV) i k f Ei-Ef=30.8 keV
Cascade Decay in Cavity i E k Atom-field coupling f Two-level atom with forbidden transition E=Ei-Ek=Ek-Ef =1/2(Ei-Ef) E is the resonant frequency of cavity
Cascade Biphoton 39.76keV |E,7/2+> |G,1/2-> (b) (a) H1+H2 qm+Gh E2 k1 k2 k1 k2 E1 (d) (c)
103mRh spin-density wave Schematic drawing of 1+2D texture Exchange coupling J>0 Ferro for Fermion and Antiferro for Boson
BEC or Cooper Paring? 1012 cm-3, BEC critical density with eV mass at 300K
Onsager-Feynman quantization condition of superfluid state
Summary of Experimental Results • Massive nuclear spin-density wave (eV mass) • Strong coupling • Transparent to electrons • Symmetry Breaking (rotation & translation) • Collective Mode in Photonic Crystal • BEC phase Transition (order parameter: biphoton parity?) • Sensitive to Gravity • Giant MagnetoneV/T • Biphoton lasing
Detection Band • Low frequency band: 100 nHz – 1Hz • Long-lived nuclear states obtained by bremsstrahlung and neutron irradiation • 103mRh: half-life 56 min • 93mNb: half-life 16.12 yr • 195mPt: half-life 4.02 d • 193mIr: half-life 10.53 d
Quantum Electrodynamics Dipole Quadruple i k f Cascade decay with entangled biphoton
Nuclear Raman Effect Octupole GW i f GW-induced
Frequency Band of Interest • Low frequency band: 100 nHz – 1Hz • Candidates of multipolar nuclear transitions • Following long-lived states have been carried out by bremsstrahlung irradiation • 103mRh: half-life 56 min • 93mNb: half-life 1.6 yr • 195mPt: half-life 4.02 d • 193mIr: half-life 10.53 d
Suggested Detection Scheme (103mRh) Mollow triplet R R R t biphoton LN2 cooling GW i 0pair 0pair f
J0806.3+1527 Binary white dwarfs 50,000 miles apart orbiting with period of 321s Right ascension: 08h 06m 23.20s, Declination: +15° 27' 30.20" Distance: 1600 light years, Mass: 0.5 (primary) / 0.5 (b) M☉ GW amplitude 10-21, GW frequency 0.374 min-1. http://chandra.harvard.edu/photo/2005/j0806/
Oscillation Frequency of the Rabi Flopping Poor Repetition The peak at 0.372 min-1 is 0.5% less than 0.374 min-1, which is the GW frequency of J0806.3+1527
Oscillation Frequency of the Rabi Flopping Poor Repetition The peak at 0.368 min-1 is 2% less than 0.374 min-1, which is the GW frequency of J0806.3+1527 Night, 23rd, may, 2006 Morning, 24th, may, 2006