420 likes | 630 Views
ПАРАДОКСЫ ВЫЧИСЛИТЕЛЬНОЙ ЛИНЕЙНОЙ АЛГЕБРЫ И СПЕКТРАЛЬНЫЕ ПОРТРЕТЫ МАТРИЦ Годунов С.К. 12 октября 2011 года. Для того, чтобы надежно определялось решение системы. линейных уравнений с квадратной. матрицей. нужно, чтобы число. было не очень большим. число обусловленности.
E N D
ПАРАДОКСЫ ВЫЧИСЛИТЕЛЬНОЙ ЛИНЕЙНОЙ АЛГЕБРЫ И СПЕКТРАЛЬНЫЕ ПОРТРЕТЫ МАТРИЦ Годунов С.К. 12 октября 2011 года
Для того, чтобы надежно определялось решение системы линейных уравнений с квадратной матрицей нужно, чтобы число было не очень большим. число обусловленности Справедливо неравенство возмущенной матрицы Число обусловленности близко к если с хорошо обусловленной матрицей Решая систему можно не опасаться ошибок округления из-за которых вместо будет использованы возмущенные с малыми 2
В основу вычислительной линейной алгебры естественно положить Постулат: Только такие числовые функции от матрицы можно вычислять, для которых справедливо неравенство в котором - известная функция При этом условии, зная и точность можно дать гарантированную оценку точности для вычисленной Пример вычислимой функции - число обусловленности матрицы где если Хорошо известны алгоритмы решения системы линейных уравнений, при выполнении которых одновременно с решением вычисляется 3
Решение систем линейных уравнений
Решение систем линейных уравнений с матрицей 0.997070312500000 1.001052856445313 1.004882812500000 0.999641142785549 0.996093750000000 1.001953125000000 0.999984741210938 0.000000000000000 0.969726562500000 1.750000000000000 1.004194498062134 0.250000000000000 1.500000000000000 0.997070312500000 MATLAB 1.2500000 1.0019531 1. 0000000 1.0000002 0.7500000 1.2500000 1.0000000 0.9990234 1.0000153 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 Решения получены с помощью коммерческого MATLAB и свободно распростроняемого SCILAB (НГУ, ИМ СО РАН) SCILAB
Изложение понятия о решении системы уравнений Обычно начинается с введения определителя Реальное вычисление определителя приводит к серьёзным проблемам: ПРИМЕР: 6
С необычайной чувствительностью определителя к возмущениям (например, к погрешностям округлений) связана чувствительность и собственных значений Пример исследования устойчивости устойчиво При В теории дифференциальных уравнений (также механике, физике) широко используется критерий устойчивости решения для всех надо, чтобы Чтобы При Не устойчиво 7
Если A – NxN матрица то в оценке решения При И.М. Гельфанд, Г.Е. Шилов, 1958 г. Можно ли это считать устойчивостью? Типичное поведение затухающих решений M - оценка амплитуды L - характерное время (декремент затухания) 8
Теорема Островского (о непрерывной зависимости ) Если все элементы матрицы и матрицы подчинены неравенствам то для каждого найдется такое что В нашем случае Пример теореме Островского не противоречит. Формальная непрерывность имеет место. 9
Определение -спектра принадлежит -спектру, если Спектральный портрет матрицыA 10
Спектральные портреты симплектических матриц Рассмотрим симплектическую матрицу вида: Матрицы С, S, Pимеют следующую структуру: Изучим поведение спектральных портретов при изменении параметра t 12
Спектральные портреты симплектических матриц 13
Еще один поучительный пример (к вопросу о расчёте собственных значений матриц) 14
Эксперимент:Собственные числа матрицы С найденные сиспользованием пакетов MATLAB, MAPLE, SCILAB и библиотеки IMSL (стандартная двойная точность) 15
В действительности Точные значения: ВСЕ предыдущие примеры были вычислены с машинным представлением чисел с точностью . Если использовать машинное представление с точностью , то вычисленные будут отличаться от точных не более чем на ε-спектр покрывает круг 16
При вычислениях с точностью , пакетом MAPLE былиполучены следующие собственные значения.
Резюме проведенного обсуждения ??? Стоит ли заниматься расчетом Нет гарантии, что их можно вычислить с приемлемой точностью. (речь идет о несимметричных матрицах ) ??? ВОПРОС: Зачем в приложениях интересуются ОТВЕТ: Часто требуется убедится, что или, что на прямой нет Предлагается решать более общий вопрос: Есть ли на той или иной кривой ? Если кривая не проходит через то всюду на этой кривой Для гладкой кривой конечной длины при этом 18
Дихотомия спектра Удобно критерий отсутствия на кривой формулировать как Для кривых конечной длины предполагается, что Важное неравенство Критерий дихотомии спектра кривой 19
Одномерный спектральный портрет a Спектральные зоны –полосы содержащие точки спектра - числовая функция от матрицы критерий дихотомии спектра прямой 20
Одномерный радиальный спектральный портрет критерий дихотомии спектра окружностью 21
Алгоритм анализа радиальной дихотомии спектра находим из систем: после чего вычисляем Если то 22
Если то - критерий дихотомии спектра окружностью Дискретное уравнение Ляпунова (обобщение): Оценки: 23
Исследование устойчивости (по Ляпунову) 1) исследование «устойчивости» решений дифференциальных уравнений ? Вопрос: для всех ли решений справедливо утверждение Критерий устойчивости: Универсальная оценка Н -- матрица Ляпунова – решения матричного уравнения имеет место, если существует Дихотомия спектра прямой матрица Грина при 24
Дихотомия прямой имеет место, если существует Дихотомия спектра прямой матрица Грина при Критерий дихотомии 25
Эта матрица удовлетворяет матричным уравнениям Для убывающих при решений векторного уравнения Справедливы оценки 26
Сходится ли итерационный процесс к решению системы ? Критерий сходимости: Н -- матрица решения дискретного матричного уравнения Ляпунова 27
В основу вычислительной линейной алгебры естественно положить Постулат: Только такие числовые функции от матрицы можно вычислять, для которых справедливо неравенство в котором - известная функция При этом условии, зная и точность можно дать гарантированную оценку точности для вычисленной Критерий дихотомии удовлетворяет этому постулату 28
Одномерный радиальный спектральный портрет Мы показали как рассчитать и следовательно как нарисовать этот спектральный портрет Портреты дихотомии прямыми рассчитываются аналогично
APPLICATION OF NEW MATHEMATICAL TOOL“ONE-DIMENTIONAL SPECTRAL PORTRAITS OF MATRIX”TO THE PROBLEM OF AEROELASTICITY VIBRATION • Godunov S.K Novosibirsk • Kurzin V.B. Novosibirsk • Bunkov V.G. Jukovskii • Sadkane M. Brest (France) Из доклада, прочитанного на конференции по аэроупругости (Москва, октябрь 2006) 30
The simple flatter model • Without the aerodynamic effect: • Modeling of aerodynamiceffects (v is the flow velocity) 31
The same example V 34
Упорядоченная последовательность букв Рассмотрим 6 букв алфавита: а б и п р т Рассмотрим большую (периодическую) последовательность букв: …ритатипбратарбатпиратритатипбратарбат… В этой последовательности: за буквой а следует 1 раз за период буква р и 4 раза буква т, за буквой б1 раз следует буква а и 1 раз буква р… Таблица вероятностей следования букв
Упорядоченная последовательность букв Этой последовательности соответствует матрица: Можно рассмотреть 32 буквы алфавита и любые длинные тексты, написанные с их помощью. Например, произведения разных писателей. Каждому произведению аналогичным способом сопоставляется 32х32 матрица. Можно ли идентифицировать писателя по спектральному портрету такой матрицы?
Характерные двумерные спектральные портреты писателей
Характерные двумерные спектральные портреты писателей Л. Толстой А. Чехов Граница хаусдорфова множества 38