60 likes | 171 Views
C. F. L ’unité est le centimètre. La figure n ’est pas à l ’échelle . On ne demande pas de reproduire la figure. Les points E,M,A,B sont alignés dans cet ordre, les points F,P,A,C sont alignés dans cet ordre. Les droites (EF) et (MP) sont parallèles.
E N D
C F L ’unité est le centimètre. La figure n ’est pas à l ’échelle . On ne demande pas de reproduire la figure. Les points E,M,A,B sont alignés dans cet ordre, les points F,P,A,C sont alignés dans cet ordre. Les droites (EF) et (MP) sont parallèles. AM = 6 ; MP = 4,8 ; AP = 3,6 ; EF = 6 ; AC = 4,5 ; AB = 7,5 1) Démontrer que le triangle AMP est un triangle rectangle. 2) Calculer AE et en déduire la longueur ME. 3) Démontrer que les droites (MP) et (BC) sont parallèles. 4) Démontrer que les angles CBA et AMP sont égaux. A M E B P
C 6 4,8 3,6 A M E B P F 1) Le triangle AMP est-il rectangle ? Les mesures des trois côtés sont connues. On cherche à savoir si l ’égalité de Pythagore est vérifiée. Le côté le plus long du triangle AMP est AM = 6 cm. Je compare AP² + MP² = 3,6² + 4,8² AP² + MP² = 12,96 + 23,04 AP² + MP² = 36 AM² = 6² AM² = 36 L’égalité de Pythagore est vérifiée : on applique le théorème réciproque de Pythagore. D’après le théorème réciproque de Pythagore ce triangle est rectangle en A.
C C 6 A M E B 4,8 6 3,6 P F A M E B P F 2) On demande de calculer AE et EM. Sur ce croquis on sait que les droites (MP) et (EF) sont parallèles. On connaît AM = 6 AP = 3,6 MP = 4,8 et EF = 6 . Les droites (MP) et (EF) sont parallèles donc les triangles AMP et AEF sont en situation de THALES. L’égalité de THALES s ’écrit : Petit côté grand côté parallèle Petit côté grand côté parallèle Petit côté grand côté parallèle A est le point opposé aux deux côtés parallèles.
C C 6 A M E B 4,8 6 3,6 P F A M E B P F Pour calculer MN je choisis 4,8 AM = 36 : 4,8 AM = 36/4,8 AM = 7,5 cm Les points A,M et E sont alignés donc EM =AE - AM donc EM =1,5cm
C 4,5 6 7,5 3,6 A M E B P F 3) Démontrer que les droites (MP) et (BC) sont parallèles. Les points M,A,B d ’une part et les points P,A et C d ’autre part sont alignés dans le même ordre, donc si Alors les droites (MP) et (BC) sont parallèles. Je vérifie L ’égalité est vérifiée donc les droites (MP) et (BC) sont parallèles d ’après le théorème réciproque de THALES.
C 4) Démontrer que les angles CBA et AMP sont égaux. A M E B P F D ’après la question précédente, les droites (MP) et (BC) sont parallèles et coupent les deux sécantes (MB) et (PC) donc elles déterminent deux angles alternes-internes de même mesure.