1 / 51

Optoelectronic Parallel Computing with its Applications

Prasanta K. Jana Department of Computer Sc. & Engg. Indian School of Mines, Dhanbad. Optoelectronic Parallel Computing with its Applications. IWLSC-06, 8-10 Feb. Department of Computer Sc. & Engg. Indian School of Mines, Dhanbad. IWLSC-06, 8-10 Feb.

effie
Download Presentation

Optoelectronic Parallel Computing with its Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Prasanta K. Jana Department of Computer Sc. & Engg. Indian School of Mines, Dhanbad Optoelectronic Parallel Computing with its Applications IWLSC-06, 8-10 Feb.

  2. Department of Computer Sc. & Engg. Indian School of Mines, Dhanbad IWLSC-06, 8-10 Feb

  3. Optoelectronic Parallel computers A hybrid Structure using optical and electronic links to support massive parallel processing An Example: OTIS (Optical Transpose Interconnection System) Proposed by Marsden et al. in Optics Letter, 18 (1993) 1083-1085 IWLSC-06, 8-10 Feb.

  4. Why Hybrid? Processors are spreaded over several levels of packaging hierarchy Background: IWLSC-06, 8-10 Feb.

  5. Why Hybrid (Contd…) Advantages of Optical Links over Electrical Links • 1. Higher speed Use of light pulses Wave guides support Pipelining • 2. Less cross talk Sharing of optical bus Only one message on a shared electronic bus IWLSC-06, 8-10 Feb.

  6. Why HybridAdvantages (Contd..) • 3. Less Power Consumption Power requirement nearly independent of lengths References: M. Feldman et al. in Applied Optics, 27(9), 1998,1742-1751 F. Kiamilev et al. In Journal of Lightwave Technology, 9(12), 1991 IWLSC-06, 8-10 Feb.

  7. Why Hybrid (Contd…) • Electronic links are very efficient if the distance is up to few millimeters Conclusion: Use optical links for far processors and electronic links for near processors – A Hybrid. IWLSC-06, 8-10 Feb.

  8. OTIS organization • Processors are divided into groups • Each group contains several processors • Electronic links for intra-group and optical links for inter-group processors. • (G, P) is connected to (P, G) IWLSC-06, 8-10 Feb.

  9. Group 1 Group 2 1,2 2,2 1,1 2,1 1,4 2,4 1,3 2,3 3,2 4,2 3,1 4,1 3,4 4,4 3,3 4,3 Group 2 Group 3 Group 4 16 Processors OTIS Mesh IWLSC-06, 8-10 Feb.

  10. OTIS Models OTIS Mesh OTIS Hypercube OTIS Ring OTIS Mesh of Trees IWLSC-06, 8-10 Feb.

  11. Existing Parallel algorithms on Optoelectronic Models [1] C. F. Wang and S. Sahni, “Basic operations on the OTIS-Mesh optoelectronic computer,” IEEE Trans. On Parallel and Distributed Systems Vol.9, No. 12, pp. 1226–1998. December, 1998. [2] K. Day, “Topological Properties of OTIS-Networks,” IEEE Trans. On Parallel and Distributed Systems Vol.13, No. 4, pp. 359-366–1998. April, 2002 [3] A. Datta, “Summation and Routing on a Partitioned Optical Passive Stars Network with large Group Size,” IEEE Trans. On Parallel and Distributed Systems Vol.14, No. 12, pp.1275-1285, 2003. [4] J. Lie, Yi Pan and H. Shen, “Subalgorithmic Deterministic Selection on Arrays with a Reconfigurable Optival Bus,” IEEE Trans. On Computers Vol.51, No. 6, pp. 702–707. June, 2002. IWLSC-06, 8-10 Feb.

  12. [5] A. Osterloh, “Sorting on the OTIS-Mesh,” Proc. 14th Int. Parallel and Distributed Processing Symposium (IPDPS 2000), pp. 269-274, 2000. [6] C. F. Wang and S. Sahni, “Matrix multiplication on the OTIS-Mesh optoelectronic computer,” IEEE Trans. On Computers,Vol.50, No. 7, pp. 635–646, July, 2001. [7] S. Sahni and C.F.Wang, “BPC permutations on the OTIS-Mesh optoelctronic computer,” Proc. Fourth Int’l. Conference Massively Parallel Processing Using Optical Interconnections (MIPPOI ’97), pp. 130-135, 1997.[8] S. Rajasekaran and S. Sahni, “Randomized routing, Selection, and Sorting on the OTIS-Mesh optoelectronic computer, IEEE Trans. On Parallel and Distributed Systems Vol.9, No. 9, pp. 833-840, 1998. IWLSC-06, 8-10 Feb.

  13. [9] C. F. Wang and S. Sahni, “Image processing on the OTIS-Mesh optoelectronic computer,” IEEE Trans. On Parallel and Distributed Systems Vol.11, No. 2, pp. 97–109. December, 1998.[10] P. K. Jana, “Polynomial interpolation on OTIS-Mesh optoelctronic computers,” Distributed Computing-IWDC 2004: Lecture notes in computer Science (Springer), Heidelberg, pp. 373-378, 2004.[11] P. K. Jana, “Improved Parallel Prefix Computation on Optical Multi-Trees ,” in Proceedings of IEEE Indicon 2004, IITKharagpur, India, 20 - 22 Dec. 2004, pp. 414-418.[12] P. K. Jana and Koushik Sinha “Bit reversal permutation on optical multi-trees (OMULT),” in Proceedings of 12th International conference on Advanced computing and communications(ADCOM 2004), Ahmedabad, India, 15-18 December 2004. IWLSC-06, 8-10 Feb.

  14. Prefix Problem: Given N data values x1, x2, …, xN compute Pi = x1 o x2 o x3 o… o xi , 1≤ i ≤ N where o is an associative binary operation Expanded form: P1 = x1 P2 = x1 o x2 P3 = x1 o x2 o x3  PN = x1 o x2 o x3 o… o xN IWLSC-06, 8-10 Feb.

  15. Sequential AlgorithmP1 = x1Pi = Pi-1 oxi i  2Requires O(n) time IWLSC-06, 8-10 Feb.

  16. Applications of Prefix Computation • Knapsack Problem • Job Sequencing with deadline • Compiler Design • Computational Biology • Evaluation of Polynomials • Solving System of Linear Equations • Polynomial Interpolation IWLSC-06, 8-10 Feb.

  17. Our Proposed Algorithmon OTIS Mesh For n-point prefix on an OTIS mesh using n processors In 5.5n ¼ + 3 Electronics move + 2 OTIS move IWLSC-06, 8-10 Feb.

  18. Group 11 12 Group 1,2 1,2 1,1 1,1 2,2 2,2 2,1 2,1 1,2 1,2 1,1 1,1 2,2 2,2 2,1 2,1 Group 2 Group 21 22 Group 16 Processors OTIS Mesh 4 IWLSC-06, 8-10 Feb.

  19. Initialization IWLSC-06, 8-10 Feb.

  20. 1 5 9 13 65 69 73 77 129 133 137 141 193 197 201 205 • 2 6 10 14 66 70 74 78 130 134 138 142 194 198 202 206 • 4 8 12 16 68 72 76 80 132 136 140 144 196 200 204 208 • 3 7 11 15 67 71 75 79 131 135 139 143 195 199 203 207 • 17 21 25 29 81 85 89 93 145 149 153 157 209 213 217 221 • 18 22 26 30 82 86 90 94 146 150 154 158 210 214 218 222 • 20 24 28 32 84 88 92 96 148 152 156 160 212 216 220 224 • 19 23 27 31 83 87 91 95 147 151 155 159 211 215 219 223 • 53 57 61 113 117 121 125 177 181 185 189 241 245 249 253 • 54 58 62 114 118 122 126 178 182 186 190 242 246 250 254 • 52 56 60 64 116 120 124 128 180 184 188 192 244 248 252 256 • 51 55 59 63 115 119 123 127 179 183 187 191 243 247 251 255 • 33 37 41 45 97 101 105 109 161 165 169 173 225 229 233 237 • 34 38 42 46 98 102 106 110 162 166 170 174 226 230 234 238 • 36 40 44 48 100 104 108 112 164 168 172 176 228 232 236 240 • 35 39 43 47 99 103 107 111 163 167 171 175 227 231 235 239 • Initialization IWLSC-06, 8-10 Feb.

  21. 1-1 1-5 1-9 1-13 65-65 129-129 193-194 1-2 1-6 1-10 1-14 1-4 1-8 1-12 1-16 65-80 129-144 193-208 1-3 1-7 1-11 1-15 17-17 81-81 145 -145 209-209 17-32 81-96 145-160 209-224 49-49 113-113 177 -177 241-241 49-64 113-128 177-192 241-256 33-33 97-97 161-161 225-225 33-48 97-112 161-176 225-240 Block Prefix Computation Time: 2n¼ + 1 Electronics Move IWLSC-06, 8-10 Feb.

  22. 1-1 1-5 1-9 1-13 65-65 129-129 193-194 1-2 1-6 1-10 1-14 1-4 1-8 1-12 1-16 65-80 129-144 193-208 1-3 1-7 1-11 1-15 17-17 81-81 145 -145 209-209 17-32 81-96 145-160 209-224 49-49 113-113 177 -177 241-241 49-64 113-128 177-192 241-256 33-33 97-97 161-161 225-225 33-48 97-112 161-176 225-240 OTIS Move (All moves are not shown) Time:One OTIS move

  23. 1-16 65-80 129-144 193-208 17-32 81-96 145-160 209-224 49-64 113-128 177-192 241-256 33-48 97-112 161-176 225-240 Result After OTIS Move IWLSC-06, 8-10 Feb.

  24. 0 1-64 1-128 1-192 1-16 1-80 1-144 1-208 1-48 1-112 1-176 1-240 1-32 1-96 1-160 1-224 Modified Prefix Time:2n¼ + 3 Electronics Move IWLSC-06, 8-10 Feb.

  25. 193-193 193-208 129-129 129-144 65-65 65-80 1-1 1-16 209-209 209-224 145-145 145-160 81-81 81-96 17-17 17-32 0 1-64 1-128 1-192 1-16 1-80 1-144 1-208 1-48 1-112 1-176 1-240 1-32 1-96 1-160 1-224 177-177 177-192 113-113 113-128 49-49 49-64 225-225 225-241 161-161 161-176 97-97 97-112 33-33 33-48 OTIS Move Time: One OTIS Move

  26. 1-193 1-208 1-129 1-144 1-65 1-80 1-1 1-16 1-209 1-224 1-145 1-160 1-81 1-96 1-17 1-32 1-177 1-192 1-113 1-128 1-49 1-64 1-241 1-256 1-225 1-240 1-161 1-176 1-97 1-112 1-33 1-48 Final Result by broadcasting Time: 1.5n¼ -1 Electronics Move IWLSC-06, 8-10 Feb.

  27. Overall Time Complexity:5.5n¼ +3 Electronics moves+ 2 OTIS moves IWLSC-06, 8-10 Feb.

  28. ALL-To-All Communications on OTIS-Ring Problem Statement: Each processor holds one message and sends the same to every other processor. Also Known as Gossiping / Total-exchange / All-broadcast IWLSC-06, 8-10 Feb.

  29. All-to-All Communication P1 P2 Pn-1 Pn P1 P2 Pn-1 Pn IWLSC-06, 8-10 Feb.

  30. Applications of All-to-All Broadcast Matrix-matrix multiplication Matrix-vector multiplication Extreme finding Reduction Prefix computation IWLSC-06, 8-10 Feb.

  31. Polynomial Interpolation: Given a set of functional values say, y1, y2, , yN, at some discrete points x1, x2, , xN, the problem of interpolation is to evaluate the function at some intermediate point x where, x1 < x < xN. N-point Lagrange formula : Where and IWLSC-06, 8-10 Feb.

  32. N-point Hermite formula :where Li (x) = Li (x) IWLSC-06, 8-10 Feb.

  33. Expanded form : =(xi-x1)(xi-2)…(xi-xi-1)(xi-xi+1)…(xi-xN), i = 1, 2…, N IWLSC-06, 8-10 Feb.

  34. Goertzel Ben, “ Lagrange interpolation on a processor tree with ring connection,” J. of Parallel and Distributed Computing. Vol. 22, No. 2(1994) 321-323. IWLSC-06, 8-10 Feb.

  35. 1 X1 X1 X1 1 X2 X2 X2 1 X5 X5 X5 1 X4 X4 X4 1 X3 X3 X3 IWLSC-06, 8-10 Feb.

  36. (X1-X5)(X1-X2) X5 X2 X1 (X2-X1)(X2-X3) X1 X3 X2 (X5-X4)(X5-X1) X4 X1 X5 (X3-X2)(X3-X4) X2 X4 X3 (X4-X3)(X4-X5) X3 X5 X4 IWLSC-06, 8-10 Feb.

  37. (X1-X5)(X1-X2) (X1-X4)(X1-X3) X4 X3 X1 (X2-X1)(X2-X3)(X2-X5)(X2-X4) X5 X4 X2 (X5-X4)(X5-X1) (X5-X3)(X5-X2) X3 X2 X5 (X3-X2)(X3-X4) (X3-X1)(X3-X5) X1 X5 X3 (X4-X3)(X4-X5) (X4-X2)(X4-X1) X2 X1 X4 IWLSC-06, 8-10 Feb.

  38. An open problem : If there exists a length-L Hamiltonian cycle in G (Group), then there exists a length-L2 hamiltoniancycle in OTIS-G Khaled Day, et al. “Topological properties of OTIS-Networks,” IEEE TPDS, Vol. 13, N0. 4, April, 2002. IWLSC-06, 8-10 Feb.

  39. 1, 1 1, 2 1, 5 1, 3 1, 4 2, 1 5, 1 5, 2 5, 5 2, 2 2, 5 2, 3 5, 4 5, 3 2, 4 3, 1 4, 1 3, 2 4, 2 3, 5 4, 5 4, 3 4, 4 3, 4 3, 3 Hamiltonian cycle IWLSC-06, 8-10 Feb.

  40. Lemma 1: If we start with (1, T +1), T = Ceil (L / 2), we can always find a Hamiltonian cycle if L is odd Proof: In short notation, the result is : (1, T+1) CR (1, T ) OM (T, 1) CR (T, L) OM (L,T ) CR (L, T - 1) OM (T- 1, L) CR (T - 1, L -1) OM (L –1, T - 1) CR(L –1, T - 2) … (T +1, 1) OM (1, T +1) IWLSC-06, 8-10 Feb.

  41. An example for L = 7 (1,5) CR (1,4) OM (4,1) CR (4,7) OM (7,4) CR (7,3) OM (3,7) CR (3,6) OM (6,3) CR (6,2) OM (2,6) CR (2,5) OM (5,2) CR ( 5,1) OM (1,5). S = {1, 4, 7, 3, 6, 2, 5, 1}. Two Divisions: S1 = {1, 7, 6, 5} S2 = {4, 3, 2, 1} 1 2 7 3 6 4 5 IWLSC-06, 8-10 Feb.

  42. Fails for even value of L For Example, L= 6 (1,4)CR(1,3)OM(3,1)CR(3,6)OM(6,3)CR(6,2)OM(2,6)CR(2,5) OM(5,2)CR(5,1)OM(1,5) 1 2 S = { 1, 3, 6, 2, 5, 1} S1 = {1, 6, 5} and S2 = {3, 2, 1} 6 3 4 5 IWLSC-06, 8-10 Feb.

  43. 0, 0 0, 1 0, 4 0, 2 0, 3 1, 0 4, 0 4, 1 4, 4 1, 1 1, 4 1, 2 4, 3 4, 2 1, 3 2, 0 3, 0 2, 1 3, 1 2, 4 3, 4 3, 2 3, 3 2, 3 2, 2 Hamiltonian cycle IWLSC-06, 8-10 Feb.

  44. References On OTIS Models O [1] G. C. Marsden, P.J. Marchand, P. Harvey and S. C. Esener, “Optical transpose interconnection system architectures,” Optics Letters, Vol. 18, No. 13, pp. 1083-1085, July, 1993. [2] F. Zane, P. Marchand, R. Paturi and S. Esener, “Scalable network architectures using the optical transpose interconnection system (OTIS),” J. of Parallel and Distributed Computing, Vol. 60 No. 5, pp. 521-538, 2000. [3] C. F. Wang and S. Sahni, “OTIS optoelectronic computers,” Parallel Computation Using Optical Interconnections, K. Li, Y. Pan and S.Q.Zhang, Eds. Kluwer Academic, 1998. [4] S. Sahni, “Models and Algorithms for Optical and Optoelectronic Parallel computers,” IWLSC-06, 8-10 Feb.

  45. References [5] C. F. Wang and S. Sahni, “Basic operations on the OTIS-Mesh optoelectronic computer,” IEEE Trans.On Parallel and Distributed Systems Vol.9, No. 12, pp. 1226–1998. December, 1998. [6] Egecioglu and A. Srinivasan, Optimal Parallel Prefix on mesh architecture. Parallel Algorithms and Applications 1 (1993), 191–209. [7] P. K. Jana, B. D. Naidu, S. Kumar, M. Arora, and B. P. Sinha, “Parallel prefix computation on extended multi-mesh network,” Information Processing Letters, Vol. 84, No. 6, pp. 295-303, October 2002 [8] S.G.Akl, The Design and Analysis of Parallel Algorithms. Englewood Cliffs, NJ: Prentice Hall, 1989. [9] S. Rajasekaran and S. Sahni, “Randomized routing, Selection, and Sorting on the OTIS-Mesh optoelectronic computer, IEEE Trans. On Parallel and Distributed Systems Vol.9, No. 9, pp. 833-840, 1998. IWLSC-06, 8-10 Feb.

  46. References (Conti…) [10] C. F. Wang and S. Sahni, “Image processing on the OTIS-Mesh optoelectronic computer,” IEEE Trans. On Parallel and Distributed Systems Vol.11, No. 2, pp. 97–109. December, 1998. [11] C. F. Wang and S. Sahni, “Matrix multiplication on the OTIS-Mesh optoelectronic computer,” IEEE Trans. On Computers, Vol.50, No. 7, pp. 635–646, July, 2001. [12] A. Osterloh, “Sorting on the OTIS-Mesh,” Proc. 14th Int’l. Parallel and Distributed Processing Symposium (IPDPS 2000), pp. 269-274, 2000. [13] S. Sahni and C.F.wang, “BPC permutations on the OTIS-Mesh optoelctronic computer,” Proc. Fourth Int’l. Conference Massively Parallel Processing Using Optical Interconnections (MIPPOI ’97), pp. 130-135, 1997. [14] Chih-Fang. Wang, and S. Sahni, “OTIS Optielectronic Computers,” Parallel computation using optical interconnection, K. Li, Y. Pan and S. Q. Zhag Eds Kluwer Academic, 1998. IWLSC-06, 8-10 Feb.

  47. Thank You IWLSC-06, 8-10 Feb.

  48. Modified Prefix on mesh 1 7 13 19 25 31 0 0 0 0 0 0 2 8 14 20 26 32 1 7 13 19 25 31 3 9 15 21 27 33 1-2 7-8 13-14 19-20 25-26 31-32 3 9 15 21 27 33 6 12 18 24 30 36 4-5 10-11 16-17 22-23 28-29 34-35 5 11 17 23 29 35 6 12 18 24 30 36 4 10 16 22 28 34 4 10 16 22 28 34 0 0 0 0 0 0 Step1 Data Initially stored Step 2 (0.5 n¼ - 1 steps) IWLSC-06, 8-10 Feb.

  49. Modified Prefix on Mesh (Conti..)0 0 0 0 0 0 0 0 0 0 0 0 1 7 13 19 25 31 1 7 13 19 25 31 1-2 6-8 12-14 18-20 24-26 30-32 1-2 3-8 9-14 15-20 21-26 27-32 6 12 18 24 30 6 12 18 24 303-5 9-11 15-17 21-23 27-29 33-35 1-5 6-11 12-17 18-23 24-29 30-35 3 9 15 21 27 33 3 9 15 21 27 33 4 10 16 22 28 34 4 10 16 22 28 34 0 0 0 0 0 0 0 0 0 0 0 0 Step 4 (2 steps) Step 3 (2 steps) IWLSC-06, 8-10 Feb.

  50. 0 6 12 18 24 30 0 1-6 1-12 1-18 1-24 1-30 1 6-7 12-13 18-19 24-25 30-31 1 1-7 1-13 1-19 1- 25 1- 31 1-2 1-8 1-14 1-20 1-26 1-32 1-2 1-8 1-14 1-20 1-26 1-32 1-5 1-11 1-17 1-23 1-26 1-32 1-5 1-11 1-17 1-23 1-29 1-353-4 9-10 15-16 21-22 27-28 33-34 1-4 1-10 1-16 1-22 1-28 1-34 3 9 15 21 27 33 1-3 1-9 1-15 1-21 1-27 1-33 Modified Prefix on Mesh (Conti…) Step 6 (0.5 n¼ + 1 steps) Step 5 (n¼ - 1 steps) Total Time: 2n¼ + 3 steps IWLSC-06, 8-10 Feb.

More Related