1 / 45

Overview of Wireless Networking

Overview of Wireless Networking. Overview. Fundamental issues and impact wireless mobility For each layer in the protocol stack A subset of design requirements Design challenges/constraints Possible design options. F. E. B. C. A. D. Physical Properties of Wireless.

efia
Download Presentation

Overview of Wireless Networking

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Overview of Wireless Networking

  2. Overview • Fundamental issues and impact • wireless • mobility • For each layer in the protocol stack • A subset of design requirements • Design challenges/constraints • Possible design options

  3. F E B C A D Physical Properties of Wireless • Wireless = Waves, electromagnetic radiation emitted by sinusoidal current running through a transmitting antenna • Signal will be received by everyone nearby. • Makes wireless network different from wired networks

  4. Typical Radio System(Sender) • A radio system transmits information to the transmitter. • The information is transmitted through an antenna which converts the RF signal into an electromagnetic wave. • The transmission medium for electromagnetic wave propagation is free space.

  5. Typical Radio System(Receiver) • The electromagnetic wave is intercepted by the receiving antenna which converts it back to an RFsignal. • Ideally, this RF signal is the same as that originally generated by the transmitter. • The originalinformation is then demodulated back to its original form.

  6. Signal Propagation reflection • Receiving power additionally influenced by • shadowing (e.g. through a wall or a door) • refraction depending on the density of a medium • reflection at large obstacles • scattering at small obstacles • diffraction at edges diffraction refraction scattering shadow fading 6

  7. Multipath Fading • The signal takes many paths to the destination. The propagation delay along each path is different. • How many meters difference gives you 0.00001 seconds of delay difference? 2 3 1 The shorter path 0 2 3  1 0 The longer path Received signal – a combination of the two signals

  8. Wireless Channel Characteristics • Radio propagation • Multipath, fade, attenuation, interference & capture • Received power is inversely proportional to the distance: distance-power gradient • Free space: factor 2 • In building corridors or large open indoor areas: <2 • Metal buildings: factor 6 • Recommended simulation factors: 2~3 for residential areas, offices and manufacturing floors; 4 for urban radio communications

  9. Free-Space Isotropic(各向同性的) Signal Propagation In free space, receiving power proportional to 1/d²(d = distance between transmitter and receiver) Suppose transmitted signal is x,received signal y = h x, where h is proportional to 1/d² Reduction also depends on wavelength Long wave length (low frequency) has less loss Short wave length (high frequency) has more loss d Pr Pt • Pr: received power • Pt: transmitted power • Gr, Gt: receiver and transmitter antenna gain •  (=c/f): wave length

  10. Wireless Channel • Wireless transmission is error prone • Wireless error and contention are location dependent • Wireless channel capacity is also location dependent Channel

  11. 信道容量:香农定理 C:信道容量,信道可能传输的最大信息速率, 即信道所能达到的最大传输能力 B:信道带宽 S:信号平均功率 N:噪声平均功率 S/N: 信噪比

  12. Link-Level Measurements • Measurements taken from 802.11b-based MIT Roofnet • Focus: • Explore reasons for loss • mainly on long outdoor links D. Aguayo, etc., "Link-level measurements from an 802.11b mesh network," ACM Sigcomm 2004.

  13. Roofnet: multihop wireless mesh 1 kilometer

  14. Using omni-direction antenna + Easy to deploy + Provide high connectivity - Don’t allow engineered link quality

  15. Lossy radio links are common Broadcast packet delivery probability 70-100% 30-70% 1-30% 1 kilometer

  16. Delivery prob. uniformly distributed Broadcast Packet Delivery Probability > two-thirds of links deliver less than 90% Node Pair

  17. Implications • Protocols should exploit intermediate-quality links • 802.11 transmit bit-rate selection • Link-quality-aware routing (ETX, LQSR) • Opportunistic protocols (OMAC, ExOR) • An emerging research direction

  18. Hypotheses for intermediate delivery probability • Marginal signal-to-noise ratios • Interference: Long bursts • Interference: Short bursts (802.11) • Multi-path interference

  19. Methodology: Link-level measurements of packet loss • Goal: all-pairs loss rates • Each node broadcasts for 90 seconds • All other nodes listen • Raw link-level measurements: • No ACKs, retransmissions, RTS/CTS • No other Roofnet traffic • No 802.11 management frames • No carrier sense

  20. Hypothesis 1: Marginal S/N • Simplified model for packet loss: • P(delivery) = f(signal/noise) • Signal strength reflects attenuation • Noise reflects interference • Perhaps marginal S/N explains intermediate delivery probabilities

  21. Delivery vs. S/N with a cable and attenuator Broadcast packet delivery probability Laboratory Signal-to-noise ratio (dB)

  22. Laboratory Roofnet Delivery vs. S/N on Roofnet Broadcast packet delivery probability Signal-to-noise ratio (dB) S/N does not predict delivery probability for intermediate-quality links

  23. Hypothesis 2: long bursts of interference A B Bursty noise might corrupt packets without affecting S/N measurements

  24. Loss over time on two different Roofnet links avg: 0.5 stddev: 0.28 Delivery probability avg: 0.5 stddev: 0.03 Time (seconds) The top graph is consistent with bursty interference. The bottom graph is not.

  25. Hypothesis 3: short bursts of interference (802.11) A B • MAC doesn’t prevent all concurrent xmits • Outcome depends on relative signal levels • Hypothesis: When a nearby AP sends a packet, we lose a packet.

  26. Methodology: record non-Roofnet 802.11 traffic • Goal: measure non-Roofnet traffic • Before the broadcast experiments • Each node records all 802.11 traffic

  27. No correlation between foreign traffic observed and packets lost Experiment packets lost per second Non-Roofnet packets observed per second (before the experiment)

  28. Hypothesis 4: Multi-path interference B B A Reflection is a delayed and attenuated copy of the signal

  29. Receiver Sender A channel emulator to investigate multi-path effects delay attenuation

  30. Reflection causes intermediate packet loss Delivery probability Delay of second ray (nanoseconds or feet)

  31. Summary • Most Roofnet links have intermediate loss rates • SNR is related to packet loss rate, but does not predict delivery probability • Loss is not consistent withbursty interference • Multi-path is likely to be a major cause wireless environment is really different from wired, and is almost unpredictable.

  32. Mobility • Why mobility? • 30~40% of the US workforce is mobile (Yankee group) • Hundreds of millions of users are already using portable computing devices and more than 60% of them are prepared to pay for wireless access to the backbone information

  33. Mobility • Four types of activities for a typical office work during a workday: • Communication (fax, email) • Data manipulation (word processing, directory services, document access & retrieval) • Information access (database access and update, internet access and search) • Information share (groupware, shared file space) • Question: how does mobility affect each of the above activities?

  34. Protocol Stack • Look at: • Applications/Services • OS issues • Middleware (skip): • Transcoding Application Layer Middleware and OS Transport Layer Network Layer Link Layer & Below

  35. Issues in building services in mobile networking environments • Mobility induced issues: • Seamless services: service migration • Location services: location itself is a service • Heterogeneity induced issues: • Hardware diversity • Client devices & different networks • Software diversity • System software: OS, networking protocols • Application software • Wireless induced issues: • Time-varying network connectivity: disconnection, partial connection, full connection

  36. Possible services for mobile environments • Location service • Location transparent services • Hide locations from users • Location dependent services • Services “local” to a geographic location • Not available globally • Location aware services • Services are globally available, but multiple instantiations of the same service are a function of locations • Service adapts to a location

  37. Issues in Operating Systems • Energy-efficient scheduler • File systems for disconnected operation due to mobility and disconnected wireless links • access the same file as if connected • retain the same consistency semantics for shared files as if connected • availability and reliability as if connected • ACID (atomic/recoverability, consistent, isolated/ serializablity, durable) properties for transactions • Constraints: • disconnection and/or partial connection • low bandwidth connection • variable bandwidth and latency connection • connection cost

  38. Next Step: Networking Issues

  39. Physical/MAC Layer • Requirements: • Continuous access to the channel to transmit a frame without error • Fair access to the channel: how is fairness quantified? • Low power consumption • Increase channel throughput within the given frequency band • Constraints: • Channel is error prone • Channel contention and error are location dependent • Transmission range is limited (but also enables channel reuse) • Shared channel (hidden/exposed station problem)

  40. Physical/MAC Layer • Possible options: • Physical layer: • Narrow band vs wide band: direct sequence, frequency hopping, OFDM • Antenna technology: smart antenna, directional antenna, MIMO • Adaptive modulation • MAC layer • Multiple access protocols (CSMA/CA, MACAW, etc.) • Frame reservation protocols (TDMA, DQRUMA, etc.)

  41. Network Layer • Requirements: • Maintain connectivity while user roams • Allow IP to integrate transparently with roaming hosts • Address translation to map location-independent addressing to location dependent addressing • Packet forwarding • Location directory • Support multicast, anycast • Ability to switch interfaces on the fly to migrate between failure-prone networks • Ability to provide quality of service: what is QoS in this environment?

  42. Network Layer • Constraint: • Unaware hosts running IP • Route management for mobile hosts needs to be dynamic • A backbone may not exist (ad-hoc network)

  43. Network Layer • Possible options: • Mobile IP and its variants • Two-tier addressing (location independent addressing <-> location dependent addressing) • A smart forwarding agent which encapsulates packets from unware host to forward them to MH • Location directory for managing location updates • Ad hoc routing • Shortest path, source routing, multipath routing

  44. Transport Layer • Requirements: • Congestion control and rate adaptation • Doing the right thing in the presence of different packet losses • Handling different losses (mobility-induced disconnection, channel, reroute) • Improve transient performance • Constraints: • Typically unware of mobility, yet affected by mobility • Packet may be lost due to congestion, channel error, handoffs, change of interfaces, rerouting failures • Link-layer and transport layer retransmit interactions

  45. Transport Layer • Options: • Provide indirection • Make transport layer at the end hosts ware of mobility • Provide smarts in intermediate nodes (e.g. BS) to make lower-layer transport aware • Provide error-free link layers

More Related