1 / 39

Deuterium-Deuterium Thermonuclear Fusion due to Acoustical Cavitation ( Theoretical Analysis)

SONOLUMINESCENCE AND INDUCED FUSION WORKSHOP. Deuterium-Deuterium Thermonuclear Fusion due to Acoustical Cavitation ( Theoretical Analysis). Robert I. NIGMATULIN Ufa-Bashkortostan Branch of Russian Academy of Sciences - President nigmar@anrb.ru Richard T. Lahey, Jr

egil
Download Presentation

Deuterium-Deuterium Thermonuclear Fusion due to Acoustical Cavitation ( Theoretical Analysis)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SONOLUMINESCENCE AND INDUCED FUSION WORKSHOP Deuterium-Deuterium Thermonuclear Fusion due to Acoustical Cavitation (Theoretical Analysis) Robert I. NIGMATULIN Ufa-Bashkortostan Branch of Russian Academy of Sciences - President nigmar@anrb.ru Richard T. Lahey, Jr Rensslear Polytechnic Institute Troy, NY, 12180 laheyr@rpi.edu 19June, 2003 Arlington, VA

  2. THE TEAM • RUSSIA • Ufa • Robert I. NIGMATULIN • Iskander Sh. AKHATOV • Naila K. VAKHITOVA • Raisa Kh. BOLOTNOVA • Andrew S. TOPOLNIKOV • Marat A. ILGAMOV • Kazan • Alexander A. AGANIN • USA • RPI • Richard LAHEY, Jr. • Robert BLOCK • Francisco MORAGA • ORNL • Rusi TALEYARKHAN • Colin D. WEST • Jeing S. CHO

  3. SPHERICAL SHOCK WAVE CONVERGENCE AND CUMULATION Initiation of a Spherical Shock Waveby the Convergent Interface • Selfsimilar Cumulation • of the Spherical or Cylindrical Shock Wave • from the Infinity • Guderley, 1942; • Landau & Stanyukovich, 1955; • Nigmatulin, 1967 Focusing of the Spherical Shock Waveat the Center of the Bubble The Spherical Shock Waveafter the Reflectionfrom the Center of the Bubble

  4. tw~ 30s 6 days dtC ~ 30 ns 7 min dtF ~ 50 ps 0,7 s Specific Features ofSingle Bubble Sonoluminescence a • Equilibrium bubble size a0 ~ 3 – 5 mm • Adiabatic bulk compression gas temperature Tmax ~ 5000 K (?!) • Cold water effect • Noble gas effect • Extremely short light flashes dtF ~ 50 ps = 5·10-11s tw Radius of the bubble a0 amin dtC ~ 10-8s t tw Tmax ~ 5000 K (adiabatic compression) Light Radiation dtF ~ 10-11s t

  5. Supercompression by Convergent Spherical Shock Wave Moss et al (Livermore National Laboratory, 1994) Radius of the Hot Plasma Core: 109 m = 1 nm Density: 10 g/cm3 = 104 kg/m3 Temperature: 106 K Time Duration:  1011 s = 10 ps No Thermonuclear Fusion

  6. HOW TO AMPLIFY THE SUPERCOMPRESSION? • AMPLIFING THE ACOUSTIC WAVE (pI  15-20 bar) • GAS IN THE BUBBLE:CONDENSING VAPOR (VAPOR CAVITATION) • - Minimizing Effect of Gas Cushioning • - Higher Kinetic Energy of Convergent Liquid • COLD LIQUID • LARGE MOLECULES (ORGANIC) LIQUID – Low Sound Speed in Vapor • CLUSTER of the Bubbles

  7. Kinetic Energy of Convergent Flow around the Bubble (CFAB) p 15 bar(in SBSLp  1.5 bar) Rmax 500 – 800 mcm(in SBSLRmax 50 – 80 mcm) In our experiments: • the Kinetic EnergyKof CFAB is104 times higher • the maximum mass of the gas 103 times higher BUT the final mass of the gas in the Bubblemisonly 50-100times higher (because of the condensation) • K/m and Tmax is = 100 – 200 times higher than in SBSL It means that in our experiment we may getTmax (100-200)106 K

  8. Mass, Momentum, Energy Conservation Differential Equations Liquid a(t) • Mass Gas • Momentum • Energy

  9. INTERFACIAL BOUNDARY CONDITIONS (r = a(t)) Mass: - intensity of phase transition Momentum: Energy: Kinetics of phase transition (Hertz-Knudsen-Langmuir Eqn): - (Labuntsov, 1968) pS(T) – saturation pressure, l – evaporation heat a - accommodation (condensation) coefficient

  10. MI-GRUNEIZEN EQUATIONS OF STATE - averaged heat capacity and Gruneizen Coefficient • pandpp– “cold” or potential internal energy and pressure due to intermolecular interaction • TandpT– thermal internal energy and thermal pressure • c - chemical internal energy

  11. LENNARD-JONES POTENTIAL pp = Rn – Am p = pp BORN-MAYERPOTENTIAL p V 1 V0 LIQUID PHASE (NONDISSOCIATED )

  12. SHOCK ADIABAT (D-u) FOR LIQUID ACETONE(Trunin, 1992) Non-dissociated Non-dissociated Dissociated Shock Wave Speed, D, km/s Cl MASS VELOCITY, U, km/s D U Dissociated Trunin, 1992 MASS VELOCITY, U, km/s D–Shock Wave Speed U – Mass Velocity after the Shock Wave

  13. SHOCK ADIABAT & ISOTHERMS (P-V) for D-Acetone (C3D6O) ●Trunin, 1992 6000 K NDis 5000 K Dis 4000 K 3000 K PRESSURE p, Mbar Dis 2000 K 1000 K NDis RELATIVE VOLUME, r0/r Isothermsof Vapor Shock adiabat of Liquid PRESSURE p, bar 0D =  (D – U) p – p0 = 0D U RELATIVE VOLUME, r0/r

  14. ISOTHERMS (P-V) & SATURATION LINE for D-Acetone Internal Energy and Evaporation heat Isotherms C C Vapor ENERGY , 105 m2/s2 PRESSURE p, bar Liquid Evaporation Heat (ig-il) RELATIVE VOLUME, r0/r TEMPERATURE, K

  15. 0.9 0.1 Td DISSOCIATION of GAS

  16. IONIZATION of DISSOCIATED GAS

  17. IONIZATION CONSTANTS

  18. THERMAL CONDUCTIVITY for acetone 0 . 0 8 Gas 6 1 0 Gas 5 1 0 0 . 0 6 ) ) K K 4 1 0 3 3 s s ( ( / / 0 . 0 4 m m 3 1 0 g g k k , , 2 1 0 g 0 . 0 2 0 l g l / g l 1 1 0 0 . 0 0 0 1 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 3 5 7 9 1 0 1 0 1 0 1 0 T , K T , K Liquid

  19. KINETICS OF FUSION

  20. Different Stages for Bubble Expansion and Compression • Low Mach Regime (M << 1) Rayleigh-Plesset + Thermal Conductivity Eqn • Middle & High Mach Regime (M ~ 1, and M >> 1)  Hydro Code a,m 500 BF Tg=Tg(t, r) pg=pg(t) Heat conducting,homobaric gas (M < 10-1) M >1 Tg=Tg(t, r) pg=pg(t, r) SBSL t, s 30

  21. Low Mach regime For GAS (vapor): For LIQUID: Rayleigh-Plesset equation

  22. THERMAL CONDUCTIVITY EQUATIONS FOR HOMOBARIC BUBBLE (pg = pg(t)) IN INCOMPRESSIBLE LIQUID (l = const)

  23. Cluster Amplification Effect Void fraction Number of bubbles N=50 Maximum microbubble radius Radius of the cluster a, m R = 0.05 a 20 a = a = 400 mm 0max R = 4 mm 0 r = 0 r = 2mm r = 4mm r = 4mm r = 2mm t,s m r = 0 p, bar p,bar t = 32 s m m t, s r,mm

  24. LOW MACH (microsecond) STAGE

  25. LOW MACH (microsecond) STAGE

  26. Transition from LOW MACH to HIGH MACH STAGE (microsecond stage)

  27. HIGH MACH (nanosecond) STAGE 4 0 1 9 2 0 104 1 8 3 0 3 m m / 102 m g 2 0 k , , a t - t * r 1 6 2 0 1 0 1 7 1 6 0 1012 8 1 9 2 0 1010 1 8 4 108 s / m r a k 106 b , 0 t , d * / p 104 a d 1 7 t - t - 4 102 1 6 2 0 1 6 1 - 8 - 5 . 0 0 . 0 5 . 0 , n s t - t * 1 9 108 2 0 1 8 106 K , 1 7 * T 104 1 6 102 - 5 . 0 0 . 0 5 . 0 , n s t - t *

  28. HIGH MACH (nanosecond) STAGE

  29. PARAMETERS IN THE CENTER OF THE CORE

  30. LIQUID DISSOCIATION IMPACT 5 0 4 0 ] m k m 3 0 [ S U I D 2 0 A R 1 0 0 - 1 0 - 5 0 5 T I M E [ n s ] “Cold dissociation” because of the “super high pressure” (105 bar) in liquid needs 102 ns; “Super high pressure” in liquid (near the bubble interface) takes place 1 ns dissociated liquid non-dissociated liquid Вubble radiusevolution for deuterated acetone C3D6O;

  31. “COLD” ELECTRONS Te<< Ti (during 10-13 s) CV = 2000 m2/c2K, not 8000 m2/c2K

  32. Neutron production distributionand maximum density, temperature and velocity 0 . 1 6 Dr=0.132 nm Dr=0.256 nm 0 . 1 2 1 - m Dr=1.32 nm n 0 . 0 8 , r Dr=2.65 nm N Dr=5.29 nm 0 . 0 4 Dr=13.2 nm Dr=26.5 nm 0 . 0 0 100 101 0 2 0 4 0 6 0 8 0 1 0 0 r , n m , n m D r r* r 1010 0 . 1 6 0 0 . 1 6 F 4 . 0 T m a x 109 K N , r 0 . 1 2 - 4 0 0 0 . 1 2 x 3 . 0 a 108 m s T 1 / 1 - - m m m 107 & k n n 0 . 0 8 - 8 0 0 0 . 0 8 , , , 3 N u 2 . 0 m x 106 r r a m a x N / r N m g u m a x k 105 , 0 . 0 4 - 1 2 0 0 0 . 0 4 N x 1 . 0 a r m 104 r 103 0 . 0 0 - 1 6 0 0 0 . 0 0 0 . 0 10-2 10-1 100 101 102 103 10-2 10-1 100 101 102 103 10-1 102 , n m , n m r r

  33. INTERNAL GAS ENERGY AS THE SUM OF COMPONENTS

  34. Acetone =103 kg/m3 pT/p =104 kg/m3 TEMPERATURE, K

  35. LOW TEMPERATURE (condensation) EFFECT 2 5 0 3 2 0 0 a = 1.0 2 a = 0.1 1 5 0 Normalized neutron production, N/N273 1 0 0 MINIMUM MASS, mg min, ng 1 a = 0.1 a = 1.0 5 0 0 0 2 5 0 2 6 0 2 7 0 2 8 0 2 9 0 3 0 0 2 5 0 2 6 0 2 7 0 2 8 0 2 9 0 3 0 0 LIQUID TEMPERATURE, Tl0, K LIQUID TEMPERATURE, Tl0, K Minimum bubble mass and total number of emitted neutrons vs liquid temperature, T0

  36. Fig.1. Temporal dependence of the air bubble radius R and some bubble shapes in the course of a single-period harmonic pressure oscillation in water with p = 3 bar, /2 = 26.5 kHz, for a20/R0 = 2.5·10-2, R0 = 4.5 m . While plotting the shapes, the bubble radius was taken to be R0[1 + 0.3{3.5lg(R/R0) + 1.5|lg(R/R0)|}]. Incopmpressible viscous liquid, homobaric Van-der-Waals gas.

  37. a20/R0 = 0.03 Incompressible viscous Liquid Homobaric Van der Waals Gas Temporal dependences of the radius R of anair bubble in water, the sphericity distortiona2 /R and some bubble shapes just before the time of the collapsetc under harmonic forcing withp=5bar, /2=26,5 kHz for two values of the initial distortion. Convergent and divergent shock waves in the bubble are shown in figure (b). a20/R0 = 0.001

  38. SUMMARY OF THE ANALYSIS Bubble Fusion (ORNL+RPI+RAS) Sonoluminescence (LLNL) Density: 20 - 80 g/cm3 Temperature: 108 K = 10 KeV Pressure: 1011 bar Velocity: 900 km/s 10 g/cm3 106K = 10-1 KeV Time Duration: 1013–1012 s = 101-100 ps Radius of the Fusion Core: 50 nm Number of nucleus: 20 • 109 10 ps 1-3 nm Fast Neutron & Tritium Production 10-1 - 10 per collapse

  39. FINDINGS • COLD LIQUID Effect • CLUSTER effect • NON-DISSOCIATION of Liquid • “COLD” Electrons” • SHARPENNING: • Node size for Fusion Core • r  0.1 nm <<a10 nm << a10 000 nm

More Related