1 / 21

Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors.

Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors. El. Z. Gr. Core . 2. 2. C. 6. IV. 2s. 2p. 2. 2. Si. 14. IV. 3s. 3p. 2. 2. Ge. 32 . IV. 4s. 4p. El. Z. Gr. Core . El. Z. Gr. Core . 2. 1. 2. 3. B. 5. III. 2s.

egil
Download Presentation

Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors.

  2. El. Z Gr. Core 2 2 C 6 IV 2s 2p 2 2 Si 14 IV 3s 3p 2 2 Ge 32 IV 4s 4p El. Z Gr. Core El. Z Gr. Core 2 1 2 3 B 5 III 2s 2p N 7 V 2s 2p 2 1 2 3 Al 13 III 3s 3p P 15 V 3s 3p 2 1 2 3 Ga 31 III 4s 4p As 33 V 4s 4p 2 1 2 3 In 49 III 5s 5p Sb 51 V 5s 5p Composti III - V: GaA s, GaP, InSb, InP, GaN, BN, ….. El. Z Gr. Core El. Z Gr. Core 2 2 4 Cd 48 II 5s Te 52 VI 5s 5p Zn C: costante reticolare 0.356 nm Si: costante reticolare 0.543 nm Ge: costante reticolare 0.565 nm 2 2 4 30 II 4s Se 34 VI 4s 4p Composti II - VI: CdTe, CdSe, ZnTe, ….. GaAs: costante reticolare 0.56533 nm AlAs: costante reticolare 0.56605 nm Miscele solide o composti ternari: Ga Al As, In Ga As x 1 - x x 1 - x Composti quaternari: Ga In As P x 1 - x y 1 - y Applicazioni in optoelettronica ed elettronica veloce

  3. IBRIDIZZAZIONE DEGLI ORBITALI ATOMICI Sp3: simmetria tetraedrica Esempio: Carbonio ORBITALI ATOMICI Esempio: Carbonio-atomo isolato

  4. SIGMA BOND

  5. Diamond lattice Zincblende lattice COORDINATE DEI NODI IN UNA CELLA DI DIAMANTE (0,0,0) (0,1,0) (1,0,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) (½, ½,0) (½,0 ½) (0, ½, ½) (½, ½,1) (½,1, ½) (1, ½, ½) (1/4,1/4,1/4) (3/4,3/4,1/4) (3/4,1/4,3/4) (1/4,3/4,3/4) 8 NODI PROPRIAMENTE CONTENUTI IN UNA CELLA

  6. Figure 2.11. (a) A tetrahedron bond. (b) Schematic two-dimensional representation of a tetrahedron bond. Legame tetraedrico Rappresentazione bidimensionale di un legame tetraedrico

  7. Figure 2.3. Three cubic-crystal unit cells. (a) Simple cubic (only Po). (b) Body-centered cubic (e.g. Na, W). (c) Face-centered cubic (e.g. Al, Cu, Au, Pt). Figure 2.2. A generalized primitive unit cell.

  8. Trovare le intercette in termini di numeri interi di piani reticolari Prendere i reciproci e ridurli ai più piccoli dei tre interi aventi lo stesso rapporto Miller index per un singolo piano (hkl) Per piani di equivalente simmetria [hkl] Figure 2.5. A (623)-crystal plane. Figure 2.6. Miller indices of some important planes in a cubic crystal.

  9. Densità del silicio = 2.33 g/cm3 Massa atomica = 28.09 g Densità atomica del silicio = 5·1022 atomi/cm3 Costante reticolare del silicio = 0.543 nm Distanza fra primi vicini nel silicio = 0.235 nm Densità superficiale di atomi nel silicio nei piani (100) : 6.78 atomi/nm2 (110) : 9.59 atomi/nm2

  10. Figure 2.14. Schematic representation of an isolated silicon atom.

  11. Figure 2.13. The splitting of a degenerate state into a band of allowed energies.

  12. Figure 2.15. Formation of energy bands as a diamond lattice crystal is formed by bringing isolated silicon atoms together.

  13. Figure 2.16. The parabolic energy (E) vs. momentum (p) curve for a free electron. Figure 2.17.A schematic energy-momentum diagram for a special semiconductor with mn = 0.25 m0 and mp = m0.

  14. Figure 2.18. Energy band structures of Si and GaAs. Circles (º) indicate holes in the valence bands and dots (•) indicate electrons in the conduction bands (GaAs m*=0.063 m; Si m*=0.19 m). Silicon Eg = 1.12 eV GaAs Eg = 1.42 eV

  15. Figure 2.19. Schematic energy band representations of (a) a conductor with two possibilities (either the partially filled conduction band shown at the upper portion or the overlapping bands shown at the lower portion), (b) a semiconductor, and (c) an insulator.

  16. Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors.

  17. Figure 2.12. The basic bond representation of intrinsic silicon. (a) A broken bond at Position A, resulting in a conduction electron and a hole. (b) A broken bond at position B.

  18. Fonte: Dispense del corso di Dispositivi Elettronici, Prof. Carlo Naldi, Ed. CELID, 1996

  19. Fonte: Dispense del corso di Dispositivi Elettronici, Prof. Carlo Naldi, Ed. CELID, 1996

More Related