160 likes | 349 Views
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT-080211ak.ppt agust,heima,....Jan11/XLS-080211ak.xls agust,heima,....Jan11/PXP-080211ak.pxp agust,heima,...Jan11/XLS-080211hrhak.xls. H79Br. H81Br. H81Br.
E N D
1) HBr 1D (2+n)REMPI spectra simulations2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT-080211ak.ppt agust,heima,....Jan11/XLS-080211ak.xls agust,heima,....Jan11/PXP-080211ak.pxp agust,heima,...Jan11/XLS-080211hrhak.xls
H79Br H81Br H81Br Estimated values: see agust,heima,....Jan11/XLS-080211ak.xls
Unknown system Exp. H79Br Calc. B´= 7.2379, D´=0.0006 T=70K Dhn •Peakspectra("AB_Standard",70.15,0,0,0,0,2456.527,41.93246,7.2379,0.0006) •Absorptionspectra("w_stx","w_sty","w_glx","w_gly",0.5,"Gauss",0.1,21) agust,heima,....Jan11/PXP-080211ak.pxp; Lay:0, Gr:1
H79Br H81Br Dhn agust,heima,....Jan11/PXP-080211ak.pxp; Lay:0, Gr:1
Not easy to obtain good fit Possible explanation: The “unknown state”, being very close to the V(v´=m+8) system, is heavily perturbed due to “unknown state” <-> V(v´=m+8) level to level near resonance interaction.
Unknown system Exp. H79Br Calc. B´= 7.2379, D´=-0.016 T=70K Dhn •Peakspectra("AB_Standard",70.15,0,0,0,0,2456.527,41.93246, 7.2379,-0.016) •Absorptionspectra("w_stx","w_sty","w_glx","w_gly",0.5,"Gauss",0.1,21) agust,heima,....Jan11/PXP-090211ak.pxp; Lay:0, Gr:1
Fit can be obtaiend by using relatively high negative value for D´(= - 0.016 cm-1) which definitly suggests that there is a perturbation effect
V(v´=m+8) <-<-X Calc. B´= 4.40 D´=0.0017 T=150K Exp. H79Br Dhn •Peakspectra("AB_Standard",150.15,0,0,0,0,2456.527,41.93246,4.40,0.0017) •Absorptionspectra("w_stx","w_sty","w_glx","w_gly",0.5,"Gauss",0.1,21) agust,heima,....Jan11/PXP-080211ak.pxp; Lay:0, Gr:1
2) Energy level shifts and intensity ratios for the F(v´=1) state
From Q lines (C&G): DE J´,J´-1 Increase Coefficient values ± one standard deviation a = 1.2667 ± 0.269 b = 15.597 ± 0.0375 J´ agust,heima,....Jan11/PXP-080211ak.pxp; Lay:1, Gr:4
Closer look / From Q lines (C&G): DE J´,J´-1 Increase Decrease Coefficient values ± one standard deviation a = 1.2667 ± 0.269 b = 15.597 ± 0.0375 J´ agust,heima,....Jan11/PXP-080211ak.pxp; Lay:1, Gr:4
It ought to be possible to derive W12 (and W12´) and the mixing fractions ( and ) from the data above: i.e. W12 from the procedure described in http://www3.hi.is/~agust/rannsoknir/rempi/hcl/Jan11/PDF-020111ak.pdf And and from In order to do this more rotational lines / energy levels are needed for V, v´=m+7 than those given by Callaghan and Gordon (C & G)
F(v´=1) <-<-X; Q: agust,heima,...Jan11/XLS-080211hrhak.xls
The intensity ratio looks convincing for J´= 2-7 • The intensity ratio is surprisingly high for J´=8 • It is important to evaluate the uncertainties for the intensity ratios • We should try to fit the Intensity ratios vs J´by the expression • -which should be possible as long as more energy levels can be evaluated • For the V(v´=m+7) state • All in all we should emphasise to evaluate more energy • levels from rotational lines for V(v´=m+7)
Br+ 2P3/2 ->->4S3/2 should be at 79178.33 cm-1 V,v´=m+7 81Br+ J´=4 J´=4 J´=5 1 2 0 3 J´=6 J´=7 H+ J´=8 H81Br+ F(v´=1)Q J´=6,5
We need to repeat a scan over the region close to J´=5 peak for The V(v´=m+7) system to find the position of that peak.