1 / 41

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

Chabot Mathematics. §1.6 Limits & Continuity. Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu. 1.5. Review §. Any QUESTIONS About §1.5 → Limits Any QUESTIONS About HomeWork §1.5 → HW-05. §1.6 Learning Goals. Compute and use one-sided limits

eileen
Download Presentation

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chabot Mathematics §1.6 Limits& Continuity Bruce Mayer, PE Licensed Electrical & Mechanical EngineerBMayer@ChabotCollege.edu

  2. 1.5 Review § • Any QUESTIONS About • §1.5 → Limits • Any QUESTIONS About HomeWork • §1.5 → HW-05

  3. §1.6 Learning Goals • Compute and use one-sided limits • Explore the concept of continuity and examine the continuity of several functions • Investigate the intermediate value property

  4. Limits • Limits are a very basic aspect of calculus which needs to be taught first, after reviewing old material. • The concept of limits is very important, since we will need to use limits to make new ideas and formulas in calculus. • In order to understand calculus, limits are very fundamental to know!

  5. Continuous Functions • Generally Speaking A function is very likely to be “continuous” if: The graph has no holes or gaps and can be drawn on a piece of paper without lifting The Drawing Instrument(Pencil or Pen)

  6. Smooth Functions • Generally Speaking A function is very likely to be “smooth” if: The graph of the function is a “flowing” curve. This means that the graph of the function does not contain any “sharp” corners • Smoothness Analysis will be covered after we learn how to evaluate the “Slope” of curved lines

  7. Continuous vs. DisContinuous • CONTINUOUS Function Plot • DIScontinuousFunction Plot

  8. Smooth vs. Kinked/Cornered • SMOOTH-Curved Function Plot • SHARP-Cornered Function Plot

  9. ONEsided Limits - From LEFT • If f(x) Approaches L as x→c from the Left; i.e., x<c, write: • See Graph at Right

  10. ONEsided Limits – From RIGHT • If f(x) Approaches L as x→c from the Left; i.e., x<c, write: • See Graph at Right

  11. Example  PieceWiseFcn • Find the OneSidedLimits for Function: • Compute the one-sided limits of f(x) as xapproaches 1

  12. Example  OneSided Limits • SOLUTION • Need to Determine: • Because the function is defined by the first expression for values of x ≤1, have • Also the fcn is defined by the second expression for values of x >1, have

  13. Example  OneSided Limits • SOLUTION • ReCall the Requirement for Limit Existence • For the Given Fcn use the Transitive Property to Recognize that the Limit x→1 Does Not Exist as

  14. % Bruce Mayer, PE % MTH-15 • 01Jul13 % XY_fcn_Graph_BlueGreenBkGnd_Solid_Marker_Template1306.m % % The Limits xmin = -3; xmax1 = 1; xmin2 = xmax1; xmax = 3; ymin = -4; ymax = 10; % The FUNCTION x1 = linspace(xmin,xmax1,500); y1 = 1-x1.^2; x2 = linspace(xmin2,xmax,500); y2 = 3*x2+1; % The Total Function by appending x = [x1, x2]; y = [y1, y2]; % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [yminymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x1,y1,'b', x2,y2,'b', zxv,zyv, 'k', zxh,zyh, 'k', x1(end),y1(end), 'ob', 'MarkerSize', 12, 'MarkerFaceColor', 'b',... 'LineWidth', 3),axis([xminxmaxyminymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}f(x) \rightarrowPieceWise'),... title(['\fontsize{14}MTH15 • Bruce Mayer, PE • 2-Sided Limit',]),... annotation('textbox',[.51 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraphBlueGreenBkGndSolidMarkerTemplate1306.m','FontSize',7) hold on plot(x2(1),y2(1), 'ob', 'MarkerSize', 12, 'MarkerFaceColor', [0.8 1 1], 'LineWidth', 3) set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:1:ymax]) hold off MATLAB Code

  15. Continuity Analysis • DEFININITION: A function, f(x) is continuous at a point c If and Only If The limit of f(x) is independent of the direction of Approach; that is the fcn is continuous if: • Note that this a Necessary AND Sufficient, Condition

  16. Example  Continuity • Consider Function: • See Graph at Right • Determine if the Function is Continuous at • x = 4 • x = 5 • Use BiLateral Approach Limit Test

  17. Example  Continuity • Find for x = 4 The BiLateral Limits • At x = 3.9999 • At x = 4.0001 • By the PolyNomial Limit Rule • The Left Approach (3.9999) and the Right Approach (4.0001) Both Lead to 235, thus the fcn IS Continuous at x = 4

  18. Example  Continuity • Now Check Continuity at x = 5 • Use Approach Tables • From Approach Tables Note:

  19. PieceWise Continuity • A NONontinuousPieceWise-Defined Function can be made continuous thru the process of Break-Point Matching. • BreakPoint Matching • One Fcn Left Unchanged • At Least ONE Variable-Term in the other Fcn is multiplied by a CONSTANT • The two Fcns are then equated at the BreakPoint Value

  20. Example  Make Continuous • Consider the Fcn: • This Fcn isNONcontinuous asshown in the Plot • Make this Plot Continuous for Constants P & Q:

  21. Example  Continuous at 8 • The FineTunedFcn • ThePlot

  22. Example  Continuous at −13 • The FineTunedFcn • ThePlot

  23. % Bruce Mayer, PE % MTH-15 • 01Jul13 % XY_fcn_Graph_BlueGreenBkGnd_Solid_Marker_Template1306.m % % The Limits xmin = -2; xmax1 = 1; xmin2 = xmax1; xmax = 3; ymin = -15; ymax = 15; % The FUNCTION x1 = linspace(xmin,xmax1,500); y1 = 24*x1.^2 - 5*x1 - 11 ; x2 = linspace(xmin2,xmax,500); y2 = sqrt(x2) + 7; % The Total Function by appending x = [x1, x2]; y = [y1, y2]; % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [yminymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x1,y1,'b', x2,y2,'b', zxv,zyv, 'k', zxh,zyh, 'k',... 'LineWidth', 3),axis([xminxmaxyminymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}f(x) \rightarrowPieceWise'),... title(['\fontsize{14}MTH15 • Bruce Mayer, PE • PcWise Continuous',]),... annotation('textbox',[.41 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraphBlueGreenBkGndSolidMarkerTemplate1306.m','FontSize',7) hold on set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:5:ymax]) hold off P MATLAB Code

  24. % Bruce Mayer, PE % MTH-15 • 01Jul13 % XY_fcn_Graph_BlueGreenBkGnd_Solid_Marker_Template1306.m % % The Limits xmin = -2; xmax1 = 1; xmin2 = xmax1; xmax = 3; ymin = -20; ymax = 10; % The FUNCTION x1 = linspace(xmin,xmax1,500); y1 = 3*x1.^2 - 5*x1 - 11 ; x2 = linspace(xmin2,xmax,500); y2 = (-13/8)*(sqrt(x2) + 7); % The Total Function by appending x = [x1, x2]; y = [y1, y2]; % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [yminymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x1,y1,'b', x2,y2,'b', zxv,zyv, 'k', zxh,zyh, 'k',... 'LineWidth', 3),axis([xminxmaxyminymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}f(x) \rightarrowPieceWise'),... title(['\fontsize{14}MTH15 • Bruce Mayer, PE • PcWise Continuous',]),... annotation('textbox',[.41 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraphBlueGreenBkGndSolidMarkerTemplate1306.m','FontSize',7) hold on set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:5:ymax]) hold off Q MATLAB Code

  25. Intermediate Value Theorem • If f(x) is a continuous function on a closed interval [a, b] and L is any number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = L f(b) f(c) = L f(a) a c b

  26. Example  IVT • Given Fcn → • Show That f(x)=0 has a solution on [1,2] • SOLUTION • Since the Function is a PolyNomial the Fcn IS Continuous for all x • Check Interval EndPoints

  27. Example  IVT • STATE: f(x) is continuous (polynomial) and since f(1) < 0 and f(2) > 0, by the Intermediate Value Theorem there exists c on [1, 2] such that f(c) = 0. (c,0)

  28. % Bruce Mayer, PE % MTH-15 • 01Jul13 % XY_fcn_Graph_BlueGreenBkGnd_Solid_Marker_Template1306.m % % The Limits xmin = 0; xmax1 = 3; xmin2 = xmax1; xmax = 3; ymin = -10; ymax = 15; % The FUNCTION x1 = linspace(xmin,xmax1,500); y1 = 3*x1.^2 - 2*x1 - 5 ; x2 = linspace(xmin2,xmax,500); y2 = 3*x2.^2 - 2*x2 - 5; % The Total Function by appending x = [x1, x2]; y = [y1, y2]; % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [yminymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x1,y1,'b', x2,y2,'b',zxh,zyh, 'k',... 'LineWidth', 3),axis([xminxmaxyminymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x)=3x^2 - 2x - 5'),... title(['\fontsize{14}MTH15 • Bruce Mayer, PE • IVT',]),... annotation('textbox',[.41 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraphBlueGreenBkGndSolidMarkerTemplate1306.m','FontSize',7) hold on set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:5:ymax]) hold off MATLAB Code

  29. WhiteBoard Work • Problems From §1.6 • P13 → Find Limit Using Algebra • P52 → Electrically Charged Sphere • P56 → Create Continuity

  30. All Done for Today KnowYourLimits

  31. Chabot Mathematics Appendix Bruce Mayer, PE Licensed Electrical & Mechanical EngineerBMayer@ChabotCollege.edu –

  32. Make Continuous - P

  33. Make Continuous - Q

  34. Charge Hollow Sphere E-fld

  35. % Bruce Mayer, PE % MTH-15 • 01Jul13 % XY_fcn_Graph_BlueGreenBkGnd_Solid_Marker_Template1306.m % clear; clc; % InDepVar = x/R % The Limits xmin = 0; xmax1 = 1; xmin2 = xmax1; xmax = 3; ymin = -.1; ymax = 1.1; % The FUNCTION x1 = linspace(xmin,xmax1,500); y1 = 0*x1 ; x2 = linspace(xmin2,xmax,500); y2 = 1./x2.^2; x3 = 1; y3 = 1/(2*1^2) % The Total Function by appending x = [x1, x2]; y = [y1, y2]; % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [yminymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x1,y1,'b', x2,y2,'b',... 'LineWidth', 3),axis([xminxmaxyminymax]),... grid, xlabel('\fontsize{14}x/R'), ylabel('\fontsize{14}y = E(x) (Volt/meter)'),... title(['\fontsize{14}MTH15 • Bruce Mayer, PE • P1.6-52 Charged Sphere',]),... annotation('textbox',[.41 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraphBlueGreenBkGndSolidMarkerTemplate1306.m','FontSize',7) hold on plot(x3,y3, 'ob', 'MarkerSize', 6, 'MarkerFaceColor', 'b', 'LineWidth', 3) plot(x2(1),y2(1), 'ob', 'MarkerSize', 6, 'MarkerFaceColor', [0.8 1 1], 'LineWidth', 3) plot(x1(end),y1(end), 'ob', 'MarkerSize', 6, 'MarkerFaceColor', [0.8 1 1], 'LineWidth', 3) set(gca,'XTick',[xmin:1:xmax]); set(gca,'YTick',[ymin:.1:ymax]) hold off MATLAB Code

  36. P1.6-52(B)

  37. P1.6-56 Continuous Plot

More Related