1 / 67

An Introduction to Markov Logic Networks in Knowledge Bases

An Introduction to Markov Logic Networks in Knowledge Bases. 9/30/2014 Sean Goldberg sean@cise.ufl.edu. From Big Data to Big Wisdom. From Big Data to Big Wisdom. Rules. Data. Facts. What is a Knowledge Base?. What is a Knowledge Base?. What is a Knowledge Base?.

Download Presentation

An Introduction to Markov Logic Networks in Knowledge Bases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An Introduction to Markov Logic Networksin Knowledge Bases 9/30/2014 Sean Goldberg sean@cise.ufl.edu

  2. From Big Data to Big Wisdom

  3. From Big Data to Big Wisdom Rules Data Facts

  4. What is a Knowledge Base?

  5. What is a Knowledge Base?

  6. What is a Knowledge Base?

  7. What is a Knowledge Base?

  8. What is a Knowledge Base?

  9. What is a Knowledge Base?

  10. Graph Representation

  11. Triple Representation • FatherOf(Darth Vader, Luke Skywalker) • memberOf(Luke Skywalker, Rebel Alliance) • hasWeapon(Luke Skywalker, lightsaber) • isAlliedWith(Luke Skywalker, Han Solo) • IsAlliedWith(Luke Skywalker, Chewbacca) • livesOn(Luke Skywalker, Tatooine) • hasAdviser(Luke Skywalker, Yoda) • …..

  12. Large Scale KBs • KnowitAll (Univ. of Washington) • 500M facts extracted from 100M webpages (ClueWeb) • DBPedia (Univ. of Leipzig) • 3.5M entities, 700M facts extracted from Wikipedia • YAGO (Max-Planck Institute) • 2M entities, 20M facts extracted from Wikipedia and WordNet • Freebase (Google) • 20M entities, 300M facts from integrated data sources and humans • NELL (Carnegie Mellon) • 850M facts extracted from 500M webpages

  13. Explicit vs. Implicit Information

  14. Does Obama live in the US?

  15. Knowledge Expansion

  16. Inferring New Facts • Markov Network • Undirected graphical model • Markov Property: Probabilities for each node depend only on its neighbors • Most probable assignment of random variables defined by cliques • HARD to figure out all the clique potentials • First Order Logic • Data described by predicates with arguments • Logical formulas denote inference rules over predicates • Deterministic, ie. no probability • EASY to specify logical formulas • Markov Logic: Markov Networks + First Order Logic • Statistical power of MLNs + specification power of FOL

  17. Markov Networks Smoking Cancer Asthma Cough

  18. Markov Networks Smoking Cancer Asthma Cough Weight of Feature i Feature i

  19. First Order Logic FactA FactB FactC FactA FactB ^

  20. First Order Logic isA(Luke, Jedi) memberOf(Luke, Rebel Alliance)

  21. First Order Logic isAlliedWith(Han, Luke) ^ memberOf(Luke, Rebel Alliance) memberOf(Han, Rebel Alliance)

  22. First Order Logic isAlliedWith(X, Y) ^ memberOf(Y, Z) memberOf(X, Z)

  23. Soft Rules vs. Hard Rules locatedIn(Y, Z) bornIn(X, Z) bornIn(X, Y) ^

  24. Soft Rules vs. Hard Rules locatedIn(Y, Z) bornIn(X, Z) bornIn(X, Y) ^ HARD

  25. Soft Rules vs. Hard Rules locatedIn(Y, Z) bornIn(X, Z) bornIn(X, Y) ^ HARD friendOf(Y, Z) friendOf(X, Z) friendOf(X, Y) ^

  26. Soft Rules vs. Hard Rules locatedIn(Y, Z) bornIn(X, Z) bornIn(X, Y) ^ HARD friendOf(Y, Z) friendOf(X, Z) friendOf(X, Y) ^ SOFT

  27. Soft Rules vs. Hard Rules locatedIn(Y, Z) bornIn(X, Z) bornIn(X, Y) ^ HARD friendOf(Y, Z) friendOf(X, Z) friendOf(X, Y) ^ SOFT MLN Basic Idea: Give every formula a weight (higher weight  stronger constraint)

  28. Markov Logic Networks: Logic + Probability A Markov Logic Network is a collection of pairs (F, W) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5

  29. Building a Markov Network • Nodes = all possible instantiations of a predicate • Edge between two nodes iff they appear together in some formula

  30. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5

  31. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) memberOf(L, E) alliedWith(H, L)

  32. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) memberOf(L, E) alliedWith(H, L)

  33. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) memberOf(L, E) alliedWith(H, L) alliedWith(L, H)

  34. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) memberOf(L, E) alliedWith(H, L) alliedWith(L, H)

  35. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R)

  36. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R)

  37. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R)

  38. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R)

  39. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R)

  40. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R)

  41. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R) hasLightSaber(L) hasLightSaber(H)

  42. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R) hasLightSaber(L) hasLightSaber(H)

  43. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R) hasLightSaber(L) hasLightSaber(H)

  44. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R) hasLightSaber(L) hasLightSaber(H)

  45. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) Knowledge Base: memberOf(Luke, Rebels) memberOf(Han, Rebels) hasLightSaber(Luke) ~memberOf(Luke, Empire) memberOf(L, R) memberOf(H, R) hasLightSaber(L) hasLightSaber(H)

  46. Probability of Possible World

  47. Probability of Possible World

  48. Probability of Possible World Weight of formula i No. of true groundings of formula i in x

  49. Han (H) Luke (L) Rebels (R) Empire (E) memberOf(X, Z) ^ memberOf(Y, Z) -> alliedWith(X, Y) 8.5 memberOf(H, E) alliedWith(X, Y) -> alliedWith(Y, X) 100 hasLightsaber(X) -> memberOf(X, Rebels) 0.5 memberOf(L, E) alliedWith(H, L) alliedWith(L, H) memberOf(L, R) memberOf(H, R) hasLightSaber(L) hasLightSaber(H)

  50. Inference in MLNs • MAP Inference: Find the most likely possible world given some evidence

More Related