1 / 67

第十三章 DNA 的生物合成

第十三章 DNA 的生物合成. DNA 是由四种脱氧核糖核酸所组成的长链大分子,是遗传信息的携带者。 生物体的遗传信息就贮存在 DNA 的四种脱氧核糖核酸的排列顺序中。. DNA 通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现型。 DNA 的复制、转录和翻译过程就构成了 遗传学的中心法则 。

elana
Download Presentation

第十三章 DNA 的生物合成

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第十三章 DNA的生物合成 • DNA是由四种脱氧核糖核酸所组成的长链大分子,是遗传信息的携带者。 • 生物体的遗传信息就贮存在DNA的四种脱氧核糖核酸的排列顺序中。

  2. DNA通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现型。DNA的复制、转录和翻译过程就构成了遗传学的中心法则。DNA通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现型。DNA的复制、转录和翻译过程就构成了遗传学的中心法则。 • 在RNA病毒中,其遗传信息贮存在RNA分子中。因此,在这些生物体中,遗传信息的流向是RNA通过复制,将遗传信息由亲代传递给子代,通过反转录将遗传信息传递给DNA,再由DNA通过转录和翻译传递给蛋白质,这种遗传信息的流向就称为反中心法则。

  3. DNA dependent DNA polymerase——DDDP DNA dependent RNA polymerase——DDRP RNA dependent RNA polymerase——RDRP RNA dependent DNA polymerase——RDDP

  4. DNA生物合成有两种方式:DNA复制和反转录 DNA体内复制涉及:原核、真核生物的染色体、细菌质粒(环状,双链)、真核细胞器DNA(线粒体、叶绿体)、病毒(双链,环状) DNA的体外复制:分子克隆。

  5. 第一节 DNA的复制 一、 DNA的复制特点 (一)、半保留复制 • DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制(semi-conservative replication)。

  6. 1、DNA以半保留方式进行复制,是在1958年由M. Meselson 和 F. Stahl 所完成的实验所证明。该实验首先将大肠杆菌在含15N的培养基中培养约十五代,使其DNA中的碱基氮均转变为15N。将大肠杆菌移至只含14N的培养基中同步培养一代、二代、三代。分别提取DNA,作密度梯度离心,可得到下列结果:

  7. 2、、复制起始点 • DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。

  8. DNA复制的调控是在起始阶段进行的,一旦复制起始,它就会继续下去直到整个复制子完成复制。DNA复制的调控是在起始阶段进行的,一旦复制起始,它就会继续下去直到整个复制子完成复制。 复制起点是以一条链为模板起始DNA合成的一段序列。有时,两条链的复制起点并不在同一点上(不对称复制,如D环复制)。 在一个完整的细胞周期中,每一个复制起点只使用一次,完成一次复制过程。 多数生物的复制起点,都是DNA呼吸作用强烈(甲醛变性实验)的区段,即经常开放的区段,富含A.T。

  9. 3、、需要引物 • 参与DNA复制的DNA聚合酶,必须以一段具有3’端自由羟基(3’-OH)的RNA作为引物(primer) ,才能开始聚合子代DNA链。 • RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。RNA引物的碱基顺序,与其模板DNA的碱基顺序相配对。

  10. 3、、双向复制 DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制(如滚环复制)。

  11. (二)、半不连续复制 • 由于DNA聚合酶只能以5'→3'方向聚合子代DNA链,即模板DNA链的方向必须为3'→5'。因此,分别以两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的。

  12. 以3'→5'方向的亲代DNA链作模板的子代链在复制时基本上是连续进行的,其子代链的聚合方向为5'→3',这一条链被称为领头链(leading strand)。而以5'→3'方向的亲代DNA链为模板的子代链在复制时则是不连续的,其链的聚合方向也是5'→3',这条链被称为随从链(lagging strand)。

  13. 由于亲代DNA双链在复制时是逐步解开的,因此,随从链的合成也是一段一段的。DNA在复制时,由随从链所形成的一些子代DNA短链称为冈崎片段(Okazaki fragment)。 • 冈崎片段的大小,在原核生物中约为1000~2000个核苷酸,而在真核生物中约为100个核苷酸。

  14. 二、 DNA复制的条件 (一)、底物 • 以四种脱氧核糖核酸(deoxynucleotide triphosphate)为底物,即dATP,dGTP,dCTP,dTTP。 (dNMP)n+dNTP (dNMP)n+1+PPi

  15. (二)、模板(template) • DNA复制是模板依赖性的,必须要以亲代DNA链作为模板。亲代DNA的两股链解开后,可分别作为模板进行复制。

  16. (三)、引发体和RNA引物 • 引发体(primosome)由引发前体与引物酶(primase)组装而成。 • 引发前体是由若干蛋白因子聚合而成的复合体。在原核生物中,引发前体至少由六种蛋白因子构成。蛋白i、蛋白n、蛋白n”、蛋白dnaC与引物预合成有关,蛋白n’与蛋白dnaB与识别复制起始点有关,并具有ATPase活性。 • 引物酶本质上是一种依赖DNA的RNA聚合酶(DDRP),该酶以DNA为模板,聚合一段RNA短链引物(primer),以提供自由的3'-OH,使子代DNA链能够开始聚合。

  17. (四)、DNA聚合酶(DDDP) 1、种类和生理功能: • 在原核生物中,目前发现的DNA聚合酶有三种,分别命名为DNA聚合酶Ⅰ(pol Ⅰ),DNA聚合酶Ⅱ(pol Ⅱ),DNA聚合酶Ⅲ(pol Ⅲ),这三种酶都属于具有多种酶活性的多功能酶。参与DNA复制的主要是pol Ⅲ和pol Ⅰ。

  18. pol Ⅰ为单一肽链的大分子蛋白质,可被特异的蛋白酶水解为两个片段,其中的大片段称为Klenow fragment,具有5'→3'聚合酶活性和3'→5'外切酶的活性。

  19. pol Ⅲ由十种亚基组成,其中α亚基具有5'→3'聚合DNA的酶活性,因而具有复制DNA的功能;而ε亚基具有3'→5'外切酶的活性,因而与DNA复制的校正功能有关。

  20. 原核生物中的三种DNA聚合酶

  21. 在真核生物中,目前发现的DNA聚合酶有五种,分别命名为DNA聚合酶α(pol α),DNA聚合酶β(pol β),DNA聚合酶γ(pol γ),DNA聚合酶δ(pol δ),DNA聚合酶ε(pol ε)。 • 其中,参与染色体DNA复制的是pol α(延长随从链)和pol δ(延长领头链),参与线粒体DNA复制的是pol γ,polε与DNA损伤修复、校读和填补缺口有关,pol β只在其他聚合酶无活性时才发挥作用。

  22. 2、DNA复制的保真性: 为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关: • 遵守严格的碱基配对规律; • DNA聚合酶在复制时对碱基的正确选择; • 对复制过程中出现的错误及时进行校正。

  23. (五)、DNA连接酶 • DNA连接酶(DNA ligase)可催化两段DNA片段之间磷酸二酯键的形成,而使两段DNA连接起来。

  24. DNA连接酶催化的条件是:① 需一段DNA片段具有3'-OH,而另一段DNA片段具有5'-Pi基;② 未封闭的缺口位于双链DNA中,即其中有一条链是完整的;③ 需要消耗能量,在原核生物中由NAD+供能,在真核生物中由ATP供能。

  25. (六)、单链DNA结合蛋白 • 单链DNA结合蛋白(single strand binding protein, SSB)又称螺旋反稳蛋白(HDP)。这是一些能够与单链DNA结合的蛋白质因子。其作用为:① 使解开双螺旋后的DNA单链能够稳定存在,即稳定单链DNA,便于以其为模板复制子代DNA;② 保护单链DNA,避免核酸酶的降解。

  26. (七)、解螺旋酶 • 解螺旋酶(unwinding enzyme) ,又称解链酶或rep蛋白,是用于解开DNA双链的酶蛋白,每解开一对碱基,需消耗两分子ATP。目前发现存在至少存在两种解螺旋酶。

  27. (八)、拓扑异构酶(topoisomerase) • 拓扑异构酶Ⅰ可使DNA双链中的一条链切断,松开双螺旋后再将DNA链连接起来,从而避免出现链的缠绕。拓扑异构酶Ⅱ可切断DNA双链,使DNA的超螺旋松解后,再将其连接起来。 大肠杆菌拓朴异构酶Ⅰ的结构

  28. 三、 DNA生物合成过程 #复制的起始 DNA复制的起始阶段,由下列两步构成。 (一)预引发: 1.解旋解链,形成复制叉: • 由拓扑异构酶和解链酶作用,使DNA的超螺旋及双螺旋结构解开,碱基间氢键断裂,形成两条单链DNA。单链DNA结合蛋白(SSB)结合在两条单链DNA上,形成复制叉。 • DNA复制时,局部双螺旋解开形成两条单链,这种叉状结构称为复制叉。

  29. 2.引发体组装: • 由蛋白因子(如dnaB等)识别复制起始点,并与其他蛋白因子以及引物酶一起组装形成引发体。

  30. (二)引发: • 在引物酶的催化下,以DNA为模板,合成一段短的RNA片段,从而获得3'端自由羟基(3'-OH)。

  31. #复制的延长 (一)聚合子代DNA: • 由DNA聚合酶催化,以3'→5'方向的亲代DNA链为模板,从5'→3'方向聚合子代DNA链。在原核生物中,参与DNA复制延长的是DNA聚合酶Ⅲ;而在真核生物中,是DNA聚合酶α(延长随从链)和δ(延长领头链)。

  32. (二)引发体移动: • 引发体向前移动,解开新的局部双螺旋,形成新的复制叉,随从链重新合成RNA引物,继续进行链的延长。

  33. #复制的终止 (一)去除引物,填补缺口: • 在原核生物中,由DNA聚合酶Ⅰ来水解去除RNA引物,并由该酶催化延长引物缺口处的DNA,直到剩下最后一个磷酸酯键的缺口。而在真核生物中,RNA引物的去除,由一种特殊的核酸酶来水解,而冈崎片段仍由DNA聚合酶来延长。

  34. (二)连接冈崎片段: • 在DNA连接酶的催化下,形成最后一个磷酸酯键,将冈崎片段连接起来,形成完整的DNA长链。

  35. (三)真核生物端粒的形成: • 端粒(telomere)是指真核生物染色体线性DNA分子末端的结构部分,通常膨大成粒状。其共同的结构特征是由一些富含G、C的短重复序列构成,可重复数十次至数百次。 • 一段DNA序列与蛋白质形成的一种复合体,是真核细胞染色体末端所特有的结构。 • 功能: ⑴保证线性DNA的完整复制 ⑵保护染色体末端 ⑶决定细胞寿命,胚系细胞含端粒酶,体细胞不表达端粒酶。

  36. 线性DNA在复制完成后,其末端由于引物RNA的水解而可能出现缩短。故需要在端粒酶(telomerase)的催化下,进行延长反应。线性DNA在复制完成后,其末端由于引物RNA的水解而可能出现缩短。故需要在端粒酶(telomerase)的催化下,进行延长反应。 • 端粒酶是一种RNA-蛋白质复合体,它可以其RNA为模板,通过逆转录过程对末端DNA链进行延长。

  37. 端粒酶(telomerase)的作用机制

  38. 人类体细胞的端粒长度,随个体年龄增加而逐渐缩短。细胞每分裂一次,端粒缩短50-200bp,短至1-4Kbp时,细胞就停止分裂。若能重建端粒,则细胞可以永远分裂。恶性肿瘤细胞端酶表达多。人类体细胞的端粒长度,随个体年龄增加而逐渐缩短。细胞每分裂一次,端粒缩短50-200bp,短至1-4Kbp时,细胞就停止分裂。若能重建端粒,则细胞可以永远分裂。恶性肿瘤细胞端酶表达多。

  39. # DNA复制的真实性 生物体DNA复制具有高度真实性,复制107-1011碱基对,只有一个错误碱基。 碱基对的自由能通常在4-13KJ/mol,这样的自由能相当于平均参入100个核苷酸就可能出现一次错配,仅靠Watson-Crick双螺旋的碱基配对原则,突变率将高达10-2。

  40. 1、   DNA聚合酶对碱基的选择作用 酶的被动论:不同的核苷酸在聚合位点停留时间不同,正确的dNTP能长时间停留,而参与聚合。DNA聚合酶能依照模板的核苷酸,选择正确的dNTP掺入引物末端。 酶积极参与理论:DNA聚合酶对正确与错误的核苷酸,不仅亲和性不同,而且将它们插入DNA引物端的速度也不同。 动力学校正阅读:在新的磷酸二酯键未形成时,dNTP结合在酶与模板—引物复合物的聚合位点上,DNA聚合酶能识别正确与错误的dNTP。 DNA聚合酶对底物的识别作用,DNA聚合酶有两种底物,一种是DNA模板—引物,另一种是dNTP。 DNA聚合酶先识别DNA模板和引物的3,未端,再识别底物dNTP,是一种有序的识别过程。

  41. 2、   3,→5,外切活性的校正阅读 E. coli. DNA pol.Ⅰ和pol.Ⅲ有3,→5,外切活性,可删除错误插入的核苷酸。 缺失3, →5,外切活性的E. coli. DNA pol.Ⅰ,催化DNA合成时,出现错误的几率增高5-50倍。因此,3,→5,外切活性可以使DNA复制的真实性,提高1-2个数量级。

  42. 3、   影响DNA合成真实性的因素 ⑴高浓度NMP(如3,-AMP, 5,-GMP) NMP竞争酶的dNTP结合位点,抑制3,→5,外切活性。 ⑵某一种dNTP浓度银高,可使引物3,末端离开外切活性中心。 ⑶dNTP 一般与二价阳离子结合成活化形式,Mg2+为主要的二价阳离子。当用其它二价阳离子(如Mn2+)代替Mg2+时,会改变酶的主体结构,影响聚合活性和3,→3,外切活性。

  43. 4、   为什么用RNA引物 ⑴从模板复制最初几个核酸时,碱基堆集力和氢键都较弱,易发生错配 ⑵新复制的最初几个核苷酸,没有与模板形成稳定双链,DNA聚合酶的5,→3,校对功能难发挥作用。

  44. 第二节 逆转录 • 以RNA为模板,合成DNA,称为逆转录(reverse transcription)。与通常转录过程中遗传信息流从DNA到RNA的方向相反,又称为反转录。 • 致癌RNA病毒是一大类能引起鸟类、哺乳类等动物白血病、肉瘤以及其它肿瘤的病毒。这类病毒侵染细胞后并不引起细胞死亡,却可以使细胞发生恶性转化。经过改造后可以作为基因治疗的载体。

  45. 所有已知的致癌RNA病毒都含有反转录酶,因此被称为反转录病毒(retrovirus),反转录病毒的复制需要经过一个DNA中间体(前病毒)。所有已知的致癌RNA病毒都含有反转录酶,因此被称为反转录病毒(retrovirus),反转录病毒的复制需要经过一个DNA中间体(前病毒)。 反转录病毒的基因组结构的特点: (1)反转录病毒基因组通常由两条相同的(+)RNA链组成。5’端附近区域以氢键结合在一起,全长7-10Kb。 (2)每一条RNA链的两端具有相同的序列,形成正向重复序列。 (3)5’端有帽子结构,3’端有polyA,与真核mRNA相似。 (4)5’端带有1分子的宿主tRNA,作为反转录时的引物。某些鸟类反转录病毒携带的是tRNAtrp,鼠类是tRNApro

  46. 1986年7月25日,世界卫生组织(WHO)发布公报,国际病毒分类委员会会议决定,将艾滋病病毒改称为人类免疫缺陷毒(Hmuan Immunodeficiency Virus)简称HIV。

  47. HIV呈袋状球形,直径约150毫微米,包膜由一薄层类脂质构成,具有抗原性。HIV呈袋状球形,直径约150毫微米,包膜由一薄层类脂质构成,具有抗原性。 • HIV有10%碱基序列不同。 • 是单链RNA病毒, • 外有核壳蛋白, • 还有一种特殊的 逆转录酶,以单链RNA 作为模块,转录为双链 DNA,该双链DNA可 与宿主细胞的DNA结合然后逆转录为病毒的单链DNA, • 因此感染艾滋病病毒后,病毒的核酸永远与宿主细胞结合在一起,使得感染不能消失,机体无法清除病毒。

  48. 一、逆转录的条件 1.逆转录酶 • RNA指导的DNA聚合酶活力;RNase H酶活力,水解RNA—DNA杂种分子中的RNA;DNA指导的DNA聚合酶活力。 2.模板(RNA或DNA) • 以自身病毒类型的RNA为模板时,该酶活力最大,但是带有适当引物的任何种类的RNA都能作为合成DNA的模板。 3.引物(RNA或DNA) • 引物不少于四个核苷酸。 4.底物:dNTP 5.二价阳离子:Mg2+或Mn2+

More Related