1 / 13

3.3.1 几何概型

3.3.1 几何概型. 复习回顾. 古典概型的两个基本特征 ?. 有限性 : 在一次试验中 , 可能出现的结果只有有限个 , 即只有有限个不同的基本事件; 等可能性 : 每个基本事件发生的可能性是相等的. 现实生活中 , 有没有实验的所有可能结果是无穷多的情况 ?. 相应的概率如何求 ?. 一、创设情景,引入新课.   在转盘游戏中,当指针停止时,为什么指针指向红色区域的可能性大?. 因为红色区域的面积大,所以指针落在红色的区域可能性大。.

elata
Download Presentation

3.3.1 几何概型

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3.3.1 几何概型

  2. 复习回顾 古典概型的两个基本特征? • 有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件; • 等可能性:每个基本事件发生的可能性是相等的. 现实生活中,有没有实验的所有可能结果是无穷多的情况? 相应的概率如何求?

  3. 一、创设情景,引入新课   在转盘游戏中,当指针停止时,为什么指针指向红色区域的可能性大? 因为红色区域的面积大,所以指针落在红色的区域可能性大。

  4. 问题2 图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?

  5. 领悟归纳 • 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

  6. 领悟归纳 • 几何概型的特点: (1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件出现的可能性相等. • 在几何概型中,事件A的概率的计算公式如下:

  7. 三、巩固深化,应用拓展 几何概型的计算 一个质地均匀的陀螺的圆周上均匀地刻有[0 , 5)上诸数字,在桌面上旋转它,求当它停下来时,圆周与桌面接触处的刻度位于区间 [2 , 3] 上的概率。 = [2 , 3] = 3-2 = 1 = 5- 0 = 5

  8. 应用拓展 例:某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会。如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份) 甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?

  9. 解:设A={等待的时间不多于10分钟}.我们所 关心的事件A恰好是打开收音机的时刻位于 [50,60]时间段内,因此由几何概型的求概率 的公式得 即“等待的时间不超过10分钟”的概率为 例1某人午觉醒来,发现表停了,他 打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率. 分析:假设他在0-60分钟之间任何一个时刻打开收音机是等可能的,但0-60之间有无穷个时刻,不能用古典概型的公式计算随机事件发生的概率。 可以通过几何概型的求概率公式得到事件发生的概率。

  10. 巩固练习 假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ? 0← →10

  11. 练习 1.一张方桌的图案如图所示。将一颗豆子随机地扔到桌面上,假设豆子不落在线上,求下列事件的概率: (1)豆子落在红色区域; (2)豆子落在黄色区域; (3)豆子落在绿色区域; (4)豆子落在红色或绿色区域; (5)豆子落在黄色或绿色区域。

  12. 练习 2.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大? 1m 1m 3m 解:如上图,记“剪得两段绳子长都不小于1m”为事件A,把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生。由于中间一段的长度等于绳子长的三分之一,所以事件A发生的概率P(A)=1/3。

  13. 练习 3.在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率。 分析:点M随机地落在线段AB上,故线段AB为区域D。当点M位于图中的线段AC’上时,AM<AC,故线段AC’即为区域d。 解: 在AB上截取AC’=AC,于是 P(AM<AC)=P(AM<AC’) 则AM小于AC的概率为

More Related