580 likes | 860 Views
CHM 5175: Part 2.2. Introduction to Molecular Photophysics. Ken Hanson MWF 9:00 – 9:50 am Office Hours MWF 10:00-11:00. Interaction of Light with Matter. Sand in Water Sunsets. Two-slit exp Holograms Shadow Blur. Moon Light Butterfly Wings Sea Shells Soap Bubbles. Rainbows
E N D
CHM 5175: Part 2.2 Introduction to Molecular Photophysics Ken Hanson MWF 9:00 – 9:50 am • Office Hours MWF 10:00-11:00
Interaction of Light with Matter Sand in Water Sunsets Two-slit exp Holograms Shadow Blur Moon Light Butterfly Wings Sea Shells Soap Bubbles Rainbows Glasses Mirage Refractometer UV-Vis Fluorometry TA Solar Cells
Interaction of Light with Matter Narrowing Our Focus • Absorption/Transmission • Visible spectrum • Electronic Transitions- electrons excited from one energy level to another. • Atomic • Molecular • Materials Visible Light (hn) Sample
Hydrogen Absorption hn Energy hn Ground State Excited State
Hydrogen Absorption H H H H H H H “white” light source Hydrogen Sample Prism Line Spectrum Rydberg Formula
Increasing Complexity 1 e- 10 e- 80 e- Atomic Transitions (movement of electrons) + Molecular Transitions (movement of electron density) 250 e-
Transitions hn hn Atomic Transitions hn hn Molecular Transitions
Types of Molecular Transitions n -p* max150 - 300 nm p -p* max200 - 800 nm σ - σ* max< 150 nm
Types of Molecular Transitions • High energy photons • methane = 125 nm • ethane = 135 nm σ - σ* max< 150 nm Antibonding hn Bonding Ground State Excited State
Types of Molecular Transitions • Visible photons • benzene = 260 nm • tetracene = 500 nm p -p* max200 - 800 nm Antibonding hn Bonding Ground State Excited State
Types of Molecular Transitions • Visible photons • acetone = 280 nm • pyridine = 270 nm n -p* max150 - 300 nm Antibonding hn Non-Bonding Ground State Excited State
Types of Molecular Transitions σ - σ* max< 150 nm p -p* max200 - 800 nm p -p* s -s* Absorption n -p* max150 - 300 nm n -p* 400 300 100 500 200 Wavelength (nm)
Types of Molecular Transitions [Co(H2O)6]2+ Metal Centered (MC) max200 –800 nm MnO4- MLCT max300 –1000 nm LMCT max300 –1000 nm MMCT max300 –800 nm
Types of Molecular Transitions Metal Centered (MC) • d-d transitions • max200 – 800 nm [CoCl4]2- • 3d and 4d transition metals (+ ligands) • Relatively weak (0-1000 M−1cm−1) • Early structural determination eg [Co(H2O)6]2+ t2g M + L M
Types of Molecular Transitions • Metal-to-Ligand Charge Transfer (MLCT) • max300 – 1000 nm eg p* e- hn t2g L M M + L p -p* • Low-lying empty ligand orbital • Low oxidation state metal (electron rich) • High d orbital energy MLCT
Types of Molecular Transitions • Ligand-to-Metal Charge Transfer (LMCT) • max300 – 1000 nm eg e- Mn-O4- O2- (p) Mn7+ Purple t2g p e- L M M + L Cd-S S2- (p) Cd2+ Yellow • Ligand with high E lone pairs (S or Se) • Metal with low-lying empty orbitals
Types of Molecular Transitions • Metal-to-Metal Charge Transfer (MMCT) • max300 – 800 nm III e- II eg eg MMCT t2g M2 M1 t2g M1 + L M2 + L
Types of Molecular Transitions p* e- e- eg e- eg M1 t2g M2 t2g MLCT p MC LMCT Absorption M1 + M2 + L MMCT 600 500 300 700 400 Wavelength (nm)
Complete Diagram Transitions σ - σ* E2 σ -p* p -p* Transitions n -p* Electronic E1 Vibrational n - σ* Energy Rotational MC MLCT LMCT E0 MMCT
Complete Diagram Jablonski Diagram S2 E2 S1 Transitions Energy Electronic E1 Vibrational S0 Energy Rotational E0
Complete Diagram Jablonski Diagram S2 S1 Second Excited State (S2) Energy First Excited State (S1) S0 Excitation Internal Conversion Ground State (S0) Fluorescence Non-radiative decay
Complete Diagram Jablonski Diagram S2 hn S1 Energy Ground State S0 Singlet Excited State S1 S0 Excitation Internal Conversion Fluorescence Non-radiative decay
Triplet/Singlet Excited States Lower Energy Nicholas J. Turro, Principles of Molecular Photochemistry
Spin-Orbit Coupling Quantum Numbers n = Principal l = Angular ml = Magnetic ms = Electron spin Heavy Atoms Pt, Ir, I... Rotating Chair and Bicycle Wheel Nicholas J. Turro, Principles of Molecular Photochemistry
Jablonski Diagram S2 Excitation Internal Conversion Fluorescence Non-radiative decay Intersystem Crossing Phosphorescence S1 T2 Energy T1 S0
Jablonski Diagram of Anthracene Nicholas J. Turro, Principles of Molecular Photochemistry
Other Processes S2 S1 • Electron transfer • TICT • ESIPT • Photochemical Reactions T2 Energy T1 S0 Excitation Internal Conversion Fluorescence Non-radiative decay Intersystem Crossing Phosphorescence
Excited State Electron Transfer e- e- hn RuIII(bpy)3 + A- A + e- + hn + A A- [RuII(bpy)3]* RuIII(bpy)3 RuII(bpy)3
Excited State Electron Transfer Photosynthesis
Excited State Electron Transfer Photocatalyticα-alkylation of aldehydes Nicewicz, D. A.; MacMillan, D. W. C. Science 2008,322, 77-80.
Excited State Structural Change Twisted Intramolecular Charge Transfer e- e- Pratt et al. J. Chem. Phys. 2005, 122, 084309
Excited State Structural Change Excited State Proton Transfer ESIPT emission absorption reverse proton transfer Hanson et al. Org. Lett.2011, 13, 1598
Photochemical Reactions Photopolymerization Peachy Printer ($100)
Photochemical Reactions Photolithography
Photochemical Reactions Photoisomerization hn Ground State Excited State
Photochemical Reactions Photoswitches J. Am. Chem. Soc., 2013, 135 (16), pp 5974–5977
“Complete” JablonskiDiagram S2 S1 Product T2 E Product T1 S0 Processes Excitation Fluorescence Phosphorescence Non-radiative decay Internal conversion Intersystem crossing Photochemistry Measurement Technique Absorption Spectroscopy Fluorescence Spectroscopy Transient Absorption Spectroscopy Solar Cell Testing
Side Note: Other Excitations Thermal Excitation
Side Note: Other Excitations Chemical Excitation
Side Note: Other Excitations Sonoluminescence
Side Note: Other Excitations • Tribo/Fractoluminescence Nature2008, 455, 1089–1092.
Side Note: Other Excitations • Electroluminescence
Molecular Photophysics End Any Questions?