1 / 23

Klasifikasi ( Season 2 ) Nearest Neighbor

Klasifikasi ( Season 2 ) Nearest Neighbor. Pengenalan Pola Materi 3. Eko Prasetyo Teknik Informatika UPN “Veteran” Jawa Timur 2012. K-Nearest Neighbor (K-NN). K-Nearest Neighbor.

elewa
Download Presentation

Klasifikasi ( Season 2 ) Nearest Neighbor

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Klasifikasi (Season 2)Nearest Neighbor PengenalanPola Materi 3 Eko Prasetyo TeknikInformatika UPN “Veteran” JawaTimur 2012

  2. K-Nearest Neighbor (K-NN)

  3. K-Nearest Neighbor • Algoritma yang melakukanklasifikasiberdasarkankedekatanlokasi (jarak) suatu data dengan data yang lain. • Prinsipsederhana yang diadopsiolehalgoritma K-NN adalah: “Jikasuatuhewanberjalansepertibebek, bersuarakwek-kweksepertibebek, danpenampilannyasepertibebek, makahewanitumungkinbebek”. • Padaalgoritma K-NN, data berdimensiq, dapatdihitungjarakdari data tersebutke data yang lain, • Nilaijarakini yang digunakansebagainilaikedekatan/kemiripanantara data ujidengan data latih.

  4. K-Nearest Neighbor 1 tetanggaterdekat (1-NN) 2 tetanggaterdekat (2-NN) 3 tetanggaterdekat (3-NN) 7 tetanggaterdekat (7-NN)

  5. Algoritma K-NN • z = (x’,y’), adalah data ujidenganvektor x’ dan label kelas y’ yang belumdiketahui • Hitungjarak d(x’,x), jarakdiantara data uji z kesetiapvektor data latih, simpandalam D • PilihDz D, yaitu K tetanggaterdekatdari z

  6. Contoh Data latih Data ujiadalah data (3,4), fitur X=3, Y=4. Akandilakukanprediksi, masukdalamkelas yang manakah seharusnya ? Gunakanjarak Euclidean !

  7. Prediksidengan K-NN Jarak data uji (3,4) ke 17 data latih

  8. Prediksidengan K-NN Jarak data uji (3,4) ke 17 data latih

  9. Prediksidengan K-NN Untuk K=1 Data latih yang terdekatadalah data nomor 9 (4,4) dengankelas 1, maka data uji (3,4) diprediksimasukkelas 1. Untuk K=3 Data latih yang terdekatadalah data nomor 9 (4,4) dengankelas 1, data nomor 7 (2,3) dan data nomor 4 (3,2) dengankelas 0, karenakelas 1 berjumlah 1 dankelas 0 berjumlah 2 (lebihbanyakkelas 0 daripadakelas 1) maka data uji (3,4) diprediksimasukkelas 0. Untuk K=7 Data latih yang terdekatadalah data nomor 8 (5,3), 9 (4,4), 14 (4,6) dengankelas 1, data nomor 4 (3,2), 6 (1,3), 7 (2,3), dan 11 (1,5) dengankelas 0, karenakelas 1 berjumlah 3 dankelas 0 berjumlah 4 (lebihbanyakkelas 0 daripadakelas 1) maka data uji (3,4) diprediksimasukkelas 0.

  10. K-NNdimatlab • Class = knnclassify(Sample, Training, Group, k, distance, rule)

  11. %Nama file: dataset_buatan.m data = [ %x 1 2 3 3 7 1 2 5 3 4 6 1 6 1 4 5 2 4 %y 1 1 1 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 0.1 0.2 0.1 0.4 0.1 0.2 0.1 0.4 0.1 0.2 0.1 0.4 0.1 0.2 0.1 0.4 0.9 0.8 %kelas 1 1 1 1 2 1 1 2 1 2 2 1 2 1 2 2 2 2 ]; data = data'; %Nama file: contoh_knn.m dataset_buatan idx_latih = [1:8 10:18]; idx_uji = [9]; data_latih = data(idx_latih,1:2); data_uji = data(idx_uji,1:2); kelas_latih = data(idx_latih,3); K = 1; kelas_uji = knnclassify(data_uji, data_latih, kelas_latih, K) >> contoh_knn kelas_uji = 2

  12. Evaluasi K-NN • Algoritma yang menggunakanseluruh data latihuntukmelakukanprosesklasifikasi (complete storage). • Mengakibatkanuntuk data dalamjumlah yang sangatbesar, prosesprediksimenjadisangat lama. • Tidakmembedakansetiapfiturdengansuatubobot • Pada ANN (Artificial Neural Network) yang berusahamenekanfitur yang tidakpunyakontribusiterhadapklasifikasimenjadi 0 padabagianbobot, • NN tidakadabobotuntukmasing-masingfitur. • Menyimpansebagianatausemua data danhampirtidakadaprosespelatihan, • maka K-NN sangatcepatdalamproses training (karenamemangtidakada) tetapisangatlambatdalamprosesprediksi. • Hal yang rumitadalahmenentukannilai K yang paling sesuai • K-NN padaprinsipnyamemilihtetanggaterdekat, • Parameter jarakjugapentinguntukdipertimbangkansesuaidengankasusdatanya. Euclidean sangatcocokuntukmenggunakanjarakterdekat (lurus) antaradua data, tetapi Manhattan sangatrobustuntukmendeteksi outlier dalam data.

  13. Fuzzy K-Nearest Neighbor in every Class (FK-NNC)

  14. Framework FK-NNC • DiperkenalkanolehPrasetyo (2012). • FK-NNC menggunakansejumlah K tetanggaterdekatpadasetiapkelasdarisebuah data uji, bukan K tetanggaterdekatsepertipada K-NN dan FK-NN. • FK-NNC menggunakan FK-NN sebagai basis kerangkakerja, dimanasebuah data ujimempunyainilaikeanggotaanpadasetiapkelasdalam interval [0.1]. • Jumlahnilaikeanggotaansebuah data padasemuakelassamadengan 1 Tanda dot hitam (solid) adalah data uji Tigatetanggadikelas + dantigatetanggadikelas x

  15. Framework FK-NNC – Cont’d • Jarakdata ujixikesemua K tetanggadarisetiapkelaske-jdijumlahkan, formula yang digunakan: • Nilaimdisinimerupakanpangkatbobot (weight exponent) sepertipada FK-NN, nilaim > 1. • akumulasijarak data ujixikesetiapkelasdigabungkan, disimbolkanD, formula yang digunakan: • Untukmendapatkannilaikeanggotaan data ujixipadasetiapkelaske-j (adaCkelas), menggunakan formula: • Untukmenentukankelashasilprediksi data ujixi, dipilihkelasdengannilaikeanggotaanterbesardari data xi. Formula yang digunakan: (4) (5) (6) (7)

  16. Algoritma FK-NNC • Cari K tetanggaterdekatpadasetiapkelas, menggunakan formula • HitungS sebagaiakumulasijarak K tetanggapadasetiapkelas, menggunakan formula (4) • Hitung J sebagaiakumulasisemuajarakdari CK tetangga, menggunakan formula (5) • Hitung u sebagainilaikeanggotaan data padasetiapkelas, menggunakan formula (6) • Pilihnilaikeanggotaanterbesarmenggunakan formula (7), kelasdengannilaikeanggotaanterbesarmenjadikelashasilprediksiuntuk data ujitersebut.

  17. Data latih Contoh Data ujiadalah data (3,4), fitur X=3, Y=4. Akandilakukanprediksi, masukdalamkelas yang manakahseharusnya ? Gunakan m=2, danjarak Euclidean !

  18. Prediksidengan K-NN Jarak data uji (3,4) ke 17 data latih Setelahdiurutkan

  19. Perhitunganjarak FK-NNC pada data latih

  20. Hasilperitungannilaikeanggotaanpadakeduakelassebagaiberikut: Untuk K=1: , Karenau1 > u0, maka data ujidiprediksimasukkekelas 1 Untuk K=3: , Karenau1 > u0, maka data ujidiprediksimasukkekelas 1 Untuk K=5: , Karenau1 > u0, maka data ujidiprediksimasukkekelas 1 Untuk K=7: , Karenau1 > u0, maka data ujidiprediksimasukkekelas 1

  21. FK-NNCdimatlab • [prediksi,keanggotaan] = fknnc(data, labels, test, K)

  22. Contoh %Nama file: contoh_fknnc.m dataset_buatan idx_latih = [1:8 10:18]; idx_uji = [9]; data_latih = data(idx_latih,1:3); data_uji = data(idx_uji,1:3); kelas_latih = data(idx_latih,4); kelas_uji_asli = data(idx_uji,4); K = 3; [y,memberships] = fknnc(data_latih, kelas_latih, data_uji, K); display('Kelashasilprediksi');y display('Nilaikeanggotaan'); display('Kelas 1 | Kelas 2');memberships >> contoh_fknnc Kelashasilprediksi y = 2 Nilaikeanggotaan Kelas 1 | Kelas 2 memberships = 0.4043 0.5957

  23. To Be Continued … Klasifikasi (Season 3) ANY QUESTION ?

More Related