220 likes | 490 Views
WELCOME TO Data Structure. By Sumit Kumar PGT(CS) KV , Samba. Data Structure. A Data Structure is a named group of different data types which can be processed as a single unit. A data structure has well-defined operations, behaviour and properties. It has three prospective:
E N D
WELCOME TO Data Structure By Sumit Kumar PGT(CS) KV , Samba
Data Structure A Data Structure is a named group of different data types which can be processed as a single unit. A data structure has well-defined operations, behaviour and properties. It has three prospective: Application (or user) level: A way of modeling real-life data in a specific context. Abstract (or logical) level: An abstract collection of elements and its corresponding set of accessing operations. Implementation Level: A specific representation of the structure and its accessing operations in a programming language.
Types of Data Structure Simple Data Structure : These are normally built from primitive data types. Array and Structure Compound Data Structure: Simple data Structure can be combined in various ways to form more complex structure called compound data structure classified it two types: Linear: single level data structure. Elements form a sequence i.e. Stack, Queue and Linked List Non-Linear: multilevel i.e. Tree
Stack refer to the lists stored and accessed in a special way i.e. LIFO technique. In stack, insertion and deletions take place only at one end called the top. Stack
Queues are FIFO lists, where insertions take place at the “rear” end of the queue and deletions take place at the “front” end of the queues. Queues
Linked lists are special lists of some data elements linked to on another. The logical ordering is represented by having each element pointing to the next element. Each element is called node, which has two parts. The INFO part which stores the information and the POINTER part, which points to the next element. Link Lists
Tree are multilevel data structures having a hierarchical relationship among its elements called nodes. Topmost node is called root of the tree and bottommost nodes are called leaves of the tree. Tree
Operation on Data Structures Insertion Deletion Searching Traversal Sorting Merging
Array Operations Searching: Linear Search: Each element of the array is compared with the given item to be searched for, one by one. This method, which traverses the array sequentially to locate the given item, is called linear search or sequential search. Binary Search: This search technique searches the given item in minimum possible comparisons. Array must be sorted in any order.
Searching : Linear Search #include<iostrem.h> int Lsearch(int [ ], int, int); void main( ) { int ar[50], item, n ,index; cout<<“Enter desired array size (max 50) ”; cin>>n; cout<<“Enter array elements”; for(int i=0; i<n;i++) { cin>>ar[i];} cout<<“Enter the element to be search for”; cin>>item; index=Lsearch(ar,n,item); if(index==-1) cout<<“not found”; else cout<<“found”; } int Lsearch(int ar[], int size, int item) { for(int i=0; i<size;i++) {if (ar[i]==item) return 1;} return -1; }
Searching : Binary Search #include<iostrem.h> int Bsearch(int [ ], int, int); void main( ) { int ar[50], item, n ,index; cout<<“Enter desired array size (max 50) ”; cin>>n; cout<<“Enter array elements (sorted in asc order)”; for(int i=0; i<n;i++) cin>>ar[i]; cout<<“Enter the element to be search for”; cin>>item; index=Lsearch(ar,n,item); if(index==-1) cout<<“not found”; else cout<<“found”; } int Bsearch(int ar[], int size, int item) { int beg=0, last=size-1, mid; while(beg<=last) { mid=(beg+last)/2; if (item==ar[mid]) return mid; else if (item>ar[mid]) beg=mid+1; else last =mid -1; } Return -1; }
#include<iostrem.h> int FindPos(int [ ], int, int); void main( ) { int ar[50], item, n ,index; cout<<“Enter desired array size (max 50) ”; cin>>n; cout<<“Enter array elements (sorted in asc order)”; for(int i=0; i<n;i++) cin>>ar[i]; cout<<“Enter the element to be inserted”; cin>>item; if(n==50) {cout<<“Overflow”; exit(1);} index=FindPos(ar,n,item); for(i=n;i>index;i--) ar[i]=ar[i-1]; ar[index]=item; n+=1; for(i=0;i<n;i++) cout<<ar[i]<<“ “; } Insertion in array int FindPos(int ar[], int size, int item) { int pos; if(item<ar[0]) pos=0; else {for(int i=0;i<size-1;i++) { if(ar[i]<=item && item>ar[i]) { pos=i+1; break;} } if (i==size-1) pos=size; } return pos; }
#include<iostrem.h> int Lsearch (int [ ], int, int); void main( ) { int ar[50], item, n ,index; cout<<“Enter desired array size (max 50) ”; cin>>n; cout<<“Enter array elements (sorted in asc order)”; for(int i=0; i<n;i++) cin>>ar[i]; cout<<“Enter the element to be inserted”; cin>>item; if(n==0) {cout<<“Underflow”; exit(1);} index=Lsearch(ar,n,item); if (index!=-1) ar[index]=0; else cout<<“sorry”; for(i=index;i>n;i++) ar[i]=ar[i+1]; n-=1; for(i=0;i<n;i++) cout<<ar[i]<<“ “; } Deletion in array int Lsearch (int ar[], int size, int item) {for(int i=0; i<size;i++) {if (ar[i]==item) return 1;} return -1; }
#include<iostrem.h> void main( ) { int ar[50], item, n ,index; cout<<“Enter desired array size (max 50) ”; cin>>n; cout<<“Enter array elements (sorted in asc order)”; for(int i=0; i<n;i++) cin>>ar[i]; cout<<“\n Array with doubled elements is as follows\n”; for(i=0;i<n;i++) { ar[i] *=2; cout<<ar[i]<<“ “;} } Traversal in array
#include <iostream.h> int SelectionSort(int [], int); int main(){ const int NUMEL = 10; int nums[NUMEL] = {22,5,67,98,45,32,101,99,73,10}; int i, moves; moves = SelectionSort(nums, NUMEL); cout << "The sorted list, in ascending order, is:\n"; for (i = 0; i < NUMEL; i++) cout << " " << nums[i]; cout << '\n' << moves << " moves were made to sort this list\n"; return 0; } Selection Sorting in array
int SelectionSort(int num[], int numel) { int i, j, min, minidx, grade, moves = 0; for ( i = 0; i < (numel - 1); i++) { min = num[i]; // assume minimum is the first array element minidx = i; // index of minimum element for(j = i + 1; j < numel; j++) { if (num[j] < min) // if we've located a lower value { // capture it min = num[j]; minidx = j;} } if (min < num[i]) // check if we have a new minimum { // and if we do, swap values grade = num[i]; num[i] = min; num[minidx] = grade; moves++;}} return moves;} Selection Sorting in array
#include <iostream.h> int BubbleSort(int [], int); int main() { const int NUMEL = 10; int nums[NUMEL] = {22,5,67,98,45,32,101,99,73,10}; int i, moves; moves = BubbleSort(nums, NUMEL); cout << "The sorted list, in ascending order, is:\n"; for (i = 0; i < NUMEL; ++i) cout << " " <<nums[i]; cout << '\n' << moves << " were made to sort this list\n"; return 0; } Bubble Sorting in array
int BubbleSort(int num[], int numel) { int i, j, grade, moves = 0; for ( i = 0; i < (numel - 1); i++) { for(j = 1; j < numel; j++) { if (num[j] < num[j-1]) { grade = num[j]; num[j] = num[j-1]; num[j-1] = grade; moves++; } } } return moves; } Bubble Sorting in array
void InSort ( int ar[], int size){ int tmp, j; ar[0]=INT_MIN; for(int i=1; i <=size ; i++) { tmp=ar[i]; j=i+1; while(tmp<ar[j]) { ar[j+1]=ar[j]; j--; } ar[j+1]=tmp;} cout<<“After pass –” <<i <<“ – is: ”; for(int k=1; k<=size;k++) cout<<ar[k]<<“ “; cout<<endl; } Insertion Sorting in array
void MergeSort ( int A[ ], int M, int B[ ], int N, int C[ ]) { int a,b,c; for(a=0,b=N-1, c=-1; a<M && b>=0;) { if (A[a]<=B[b]) C[c++] = A[a++]; else C[c++] = B [b--]; } if(a<M) { while(a<M) C[c++] = A[a++]; } else { while(b>=0) C[c++]=B[b--]; } } Merge Sorting in array