1 / 6

Entropy (YAC- Ch. 6)

Entropy (YAC- Ch. 6). In this Chapter, we will:. Introduce the thermodynamic property called Entropy (S) Entropy is defined using the Clausius inequality Introduce the Increase of Entropy Principle which states that

Download Presentation

Entropy (YAC- Ch. 6)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Entropy (YAC- Ch. 6) In this Chapter, we will: • Introduce the thermodynamic property called Entropy (S) • Entropy is defined using the Clausius inequality • Introduce the Increase of Entropy Principle which states that • the entropy for an isolated system (or a system plus its surroundings) is always increases or, at best, remains the same. • Second Law in terms of Entropy • Learn to use the Entropy balance equation: entropy change = entropy transfer + entropy change. • Analyze entropy changes in thermodynamic process and learn how to use thermodynamic tables • Examine entropy relationships (Tds relations), entropy relations for ideal gases. • Property diagrams involving entropy (T-s and h-s diagrams) Entrpy.ppt, 10/18/01 pages

  2. Entropy is a thermodynamic property; it can be viewed as a measure of disorder. i.e. More disorganized a system the higher its entropy. • Defined using Clausius inequality • where Q is the differential heat transfer & T is the absolute • temperature at the boundary where the heat transfer occurs Entropy – A Property • Clausius inequality is valid for all cycles, reversible and irreversible. • Consider a reversible Carnot cycle: • Since , i.e. it does not change if you return to the same state, • it must be a property, by defintion: • Let’s define a thermodynamic property entropy (S), such that True for a Reversible Process only

  3. T any process 2 1 reversible process S Since entropy is a thermodynamic property, it has fixed values at a fixed thermodynamic states. Hence, the change, S, is determined by the initial and final state. BUT.. The change is = only for a Reversible Process Entropy (cont’d) Consider a cycle, where Process 2-1 is reversible and 1-2 may or may not be reversible

  4. Increase of Entropy Principle (YAC- Ch. 6-3) Increase of Entropy Principle Entropy change Entropy Transfer (due to heat transfer) Entropy Generation The principle states that for an isolated Or a closed adiabatic Or System + Surroundings A process can only take place such that Sgen 0 where Sge = 0 for a reversible process only And Sge can never be les than zero. • Implications: • Entropy, unlike energy, is non-conservative since it is always increasing. • The entropy of the universe is continuously increasing, in other words, it is becoming disorganized and is approaching chaotic. • The entropy generation is due to the presence of irreversibilities. Therefore, the higher the entropy generation the higher the irreversibilities and, accordingly, the lower the efficiency of a device since a reversible system is the most efficient system. • The above is another statement of the second law

  5. Increase of Entropy Principle is another way of stating the Second Law of Thermodynamics: • Second Law : Entropy can be created but NOT destroyed • (In contrast, the first law states: Energy is always conserved) • Note that this does not mean that the entropy of a system cannot be reduced, it can. • However, total entropy of a system + surroundings cannot be reduced • Entropy Balance is used to determine the Change in entropy of a system as follows: • Entropy change = Entropy Transfer + Entropy Generation where, • Entropy change = S = S2 - S1 • Entropy Transfer = Transfer due to Heat (Q/T) + Entropy flow due to mass flow (misi – mese) • Entropy Generation = Sgen 0 • For a Closed System: S2 - S1 = Qk /Tk + Sgen • In Rate Form:dS/dt = Qk /Tk + Sgen • For an Open System (Control Volume): • Similar to energy and mass conservation, the entropy balance equations can be simplified • Under appropriate conditions, e.g. steady state, adiabatic…. Second Law & Entropy Balance (YAC- Ch. 6-4)

  6. Source 800 K Q=2000 kJ Sink 500 K Entropy Generation Example Show that heat can not be transferred from the low-temperature sink to the high-temperature source based on the increase of entropy principle. • DS(source) = 2000/800 = 2.5 (kJ/K) • DS(sink) = -2000/500 = -4 (kJ/K) • Sgen= DS(source)+ DS(sink) = -1.5(kJ/K) < 0 • It is impossible based on the entropy increase principle • Sgen0, therefore, the heat can not transfer from low-temp. to high-temp. without external work input • If the process is reversed, 2000 kJ of heat is transferred from the source to the sink, Sgen=1.5 (kJ/K) > 0, and the process can occur according to the second law • If the sink temperature is increased to 700 K, how about the entropy generation? DS(source) = -2000/800 = -2.5(kJ/K) • DS(sink) = 2000/700 = 2.86 (kJ/K) • Sgen= DS(source)+ DS(sink) = 0.36 (kJ/K) < 1.5 (kJ/K) • Entropy generation is less than when the sink temperature is 500 K, less irreversibility. Heat transfer between objects having large temperature difference generates higher degree of irreversibilities

More Related