430 likes | 594 Views
Protein structure prediction: the customer view. Anna.Tramontano@uniroma1.it. Protein structure prediction: why. Protein structure Quality prediction: The casp initiative. Predicting:. Expected quality of a model (QMode 1) Expected error on residue C α (QMode 2).
E N D
Protein structure prediction: the customer view Anna.Tramontano@uniroma1.it
Protein structure Quality prediction: The casp initiative Predicting: • Expected quality of a model (QMode 1) • Expected error on residue Cα (QMode 2) Quoting the CASP web page: You may submit your quality assessment prediction in one of the two different modes:QMODE 1 : global model quality score (MQS - one number for a model)QMODE 2 : MQS and error estimate on per-residue basis.
Protein structure Quality prediction: The casp initiative Target xx Pred Model serv1_1 N1 Model serv1_2 N2 …………. … Model serv1_5 … … Model serv3_4 … …. Target xx GDT Model serv1_1 G1 Model serv1_2 G2 …………. … Model serv1_5 … … Model serv3_4 … …. Target yy GDT Model serv1_1 G1 Model serv1_2 G2 …………. … Model serv1_5 … … Model serv3_4 … …. Target yy Pred Model serv1_1 N1 Model serv1_2 N2 …………. … Model serv1_5 … … Model serv3_4 … ….
Protein structure Quality prediction: The casp initiative Target xx Pred Model serv1_1 N1 Model serv1_2 N2 …………. … Model serv1_5 … … Model serv3_4 … …. Target xx GDT Model serv1_1 G1 Model serv1_2 G2 …………. … Model serv1_5 … … Model serv3_4 … …. Pearson correlation Target yy GDT Model serv1_1 G1 Model serv1_2 G2 …………. … Model serv1_5 … … Model serv3_4 … …. Target yy Pred Model serv1_1 N1 Model serv1_2 N2 …………. … Model serv1_5 … … Model serv3_4 … …. By target
Protein structure Quality prediction: The casp initiative Target xx Pred Model serv1_1 N1 Model serv1_2 N2 …………. … Model serv1_5 … … Model serv3_4 … …. Target xx GDT Model serv1_1 G1 Model serv1_2 G2 …………. … Model serv1_5 … … Model serv3_4 … …. Target yy GDT Model serv1_1 G1 Model serv1_2 G2 …………. … Model serv1_5 … … Model serv3_4 … …. Target yy Pred Model serv1_1 N1 Model serv1_2 N2 …………. … Model serv1_5 … … Model serv3_4 … …. Global Pearson correlation
Protein structure Quality prediction: The casp initiative Cozzetto et al., Proteins 2007
… Protein structure modelling: A digression
Protein structure modelling: Expected accuracy Cozzetto and Tramontano, Proteins 2004
Maistas: taking splicing into account
Maistas: taking splicing into account http://www.bioinformatica.crs4.org
Maistas: taking splicing into account
ANTIBODIES: A different story
. V V H H V V L L C C H1 H1 C C L L SS C C N H2 H2 C H3 C H1 C H3 H3 H2 L2 Antibody L3 L1 C N Antigen binding site ANTIBODIES: A different story
ANTIBODIES: A different story
94 Pro 95 Pro 90 Gln ANTIBODIES: A different story 91 92 93 94 95 96 90 91 92 93 94 95 96 90 * * * * Y Q S L P Y Q W T Y P L I Q Chothia et al., Nature 1989
ANTIBODIES: A different story Canonical structures for the ‘torso’ of H3: 94R – 101D 101 101 94 94 103 103 94 non R or 101 non D Morea et al., JMB., 1998
ANTIBODIES: A different story target sequence BLAST VL template TL Align Build framework
BLAST VL template TL Align Build framework ANTIBODIES: A different story target sequence
Ab VL sequence Ab VH sequence “BLAST” VL template TL VH template TH “Align” TL=TH? Build framework Fit conserved interface Build template ANTIBODIES: A different story target sequence BLAST template Align Build framework
Ab VL sequence Ab VH sequence “BLAST” VL template TL VH template TH TL=TH? Build framework Fit conserved interface Build template ANTIBODIES: A different story “Align”
ANTIBODIES: A different story Taking the frameworks from different structures introduces errors One might be better off selecting the same template, at the cost of loosing in sequence identity
ANTIBODIES: A different story Taking the loops from different structures introduces errors One might be better off selecting a template with the right CS, at the cost of loosing in sequence identity
ANTIBODIES: A different story • Same antibody • Same antibody and canonical structures • Same canonical structures • Best Vl and Vh
ANTIBODIES: A different story ?
ANTIBODIES: A different story
ANTIBODIES: A different story AVACFATG AFGTARAS DFEARTAS ADFAERAY HGTARYAP LSVNTERAT ….. ADFAERAY LDFNMRSY PDFHGRTY AEFKLLSY
ANTIBODIES: A different story
ANTIBODIES: A different story
ANTIBODIES: A different story
ANTIBODIES: A different story ANTIBODIES: A different story
ANTIBODIES: A different story PDB
ANTIBODIES: A different story
ANTIBODIES: A different story
ANTIBODIES: A different story ?
acknowledgements Giuliana Brunetti Enrico Capobianco Simone Carcangiu Alberto de la Fuente Matteo Floris Elisabetta Marras Joël Masciocchi Elisabetta Muscas Massimiliano Orsini Enrico Pieroni Frédéric Reinier Patricia Rodriguez Tome’ Alphonse Thanaraj Thangavel Maria Valentini Tiziana Castrignanò P. D’Onorio De Meo Danilo Carrabino Domenico Cozzetto Enrico Ferraro Fabrizio Ferre’ Emanuela Giombini Alejandro Giorgetti Paolo Marcatili Domenico Raimondo Stefania Bosi Claudia Bertonati Alessandra Godi Michele Ceriani Romina Oliva Claudia Bonaccini Marialuisa Pellegrini Simonetta Soro EU Biosapiens Institut Pasteur-Cenci HFP Regione Sardegna
Advertisements: http://www.eccb08.org
Advertisements: http://predictioncenter.org 8th Cagliari, Sardinia Italy Sometimes early December 2008 8